121
Views
23
CrossRef citations to date
0
Altmetric
Review

Recent advances in biomarker discovery in solid organ transplant by proteomics

&
Pages 705-715 | Published online: 09 Jan 2014

References

  • Nankivell BJ, Alexander SI. Rejection of the kidney allograft. N. Engl. J. Med.363(15), 1451–1462 (2010).
  • de Fijter JW. Rejection and function and chronic allograft dysfunction. Kidney Int.78(Suppl. 119), S38–S41 (2010).
  • Turka LA, Lechler RI. Towards the identification of biomarkers of transplantation tolerance. Nat. Rev. Immunol.9(7), 521–526 (2009).
  • Green ED, Guyer MS. Charting a course for genomic medicine from base pairs to bedside. Nature470(7333), 204–213 (2011).
  • Ozsolak F, Platt AR, Jones DR et al. Direct RNA sequencing. Nature461(7265), 814–818 (2009).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Cox J, Mann M. Is proteomics the new genomics? Cell130(3), 395–398 (2007).
  • Norden AG, Rodriguez-Cutillas P, Unwin RJ. Clinical urinary peptidomics: learning to walk before we can run. Clin. Chem.53(3), 375–376 (2007).
  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol.24(8), 971–983 (2006).
  • Brouard S, Giral M, Soulillou JP, Ashton-Chess J. Elaboration of gene expression-based clinical decision AIDS for kidney transplantation: where do we stand? Transplantation91(7), 691–696 (2011).
  • Hricik DE, Rodriguez V, Riley J et al. Enzyme linked immunosorbent spot (ELISPOT) assay for interferon-gamma independently predicts renal function in kidney transplant recipients. Am. J. Transplant.3(7), 878–884 (2003).
  • Kowalski RJ, Post DR, Mannon RB et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation82(5), 663–668 (2006).
  • Sarwal M, Chua MS, Kambham N et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med.349(2), 125–138 (2003).
  • Li L, Ying L, Naesens M et al. Interference of globin genes with biomarker discovery for allograft rejection in peripheral blood samples. Physiol. Genomics32(2), 190–197 (2008).
  • Morgun A, Shulzhenko N, Perez-Diez A et al. Molecular profiling improves diagnoses of rejection and infection in transplanted organs. Circ. Res.98(12), e74–e83 (2006).
  • Schaub S, Rush D, Wilkins J et al. Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J. Am. Soc. Nephrol.15(1), 219–227 (2004).
  • Schaub S, Wilkins JA, Antonovici M et al. Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am. J. Transplant.5(4 Pt 1), 729–738 (2005).
  • O’Riordan E, Orlova TN, Mei JJ et al. Bioinformatic analysis of the urine proteome of acute allograft rejection. J. Am. Soc. Nephrol.15(12), 3240–3248 (2004).
  • Ling XB, Sigdel TK, Lau K et al. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J. Am. Soc. Nephrol.21(4), 646–653 (2010).
  • Sigdel TK, Kaushal A, Gritsenko M et al. Shotgun proteomics identifies proteins specific for acute renal transplant rejection. Proteomics Clin. Appl.4(1), 32–47 (2010).
  • Sigdel TK, Ling XB, Lau K et al. Urinary peptidomic analysis identifies potential biomarkers for acute rejection of renal. Clin. Proteom.5(2), 103–113 (2009).
  • Sigdel TK, Klassen RB, Sarwal MM. Interpreting the proteome and peptidome in transplantation. Adv. Clin. Chem.47, 139–169 (2009).
  • Sigdel TK, Sarwal MM. The proteogenomic path towards biomarker discovery. Pediatr. Transplant.12(7), 737–747 (2008).
  • Vidal BC, Bonventre JV, I-Hong Hsu S. Towards the application of proteomics in renal disease diagnosis. Clin. Sci. (Lond.)109(5), 421–430 (2005).
  • Gonzalez-Buitrago JM, Ferreira L, Lorenzo I. Urinary proteomics. Clin. Chim. Acta375(1–2), 49–56 (2007).
  • Vasconcellos LM, Schachter AD, Zheng XX et al. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation66(5), 562–566 (1998).
  • Simon T, Opelz G, Wiesel M, Ott RC, Susal C. Serial peripheral blood perforin and granzyme B gene expression measurements for prediction of acute rejection in kidney graft recipients. Am. J. Transplant.3(9), 1121–1127 (2003).
  • Li B, Hartono C, Ding R et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N. Engl. J. Med.344(13), 947–954 (2001).
  • Yannaraki M, Rebibou JM, Ducloux D et al. Urinary cytotoxic molecular markers for a noninvasive diagnosis in acute renal transplant rejection. Transpl. Int.19(9), 759–768 (2006).
  • Schaub S, Nickerson P, Rush D et al. Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis. Am. J. Transplant.9(6), 1347–1353 (2009).
  • Camara NO, Silva MS, Nishida S, Pereira AB, Pacheco-Silva A. Proximal tubular dysfunction is associated with chronic allograft nephropathy and decreased long-term renal-graft survival. Transplantation78(2), 269–275 (2004).
  • Teppo AM, Honkanen E, Finne P, Tornroth T, Gronhagen-Riska C. Increased urinary excretion of alpha1-microglobulin at 6 months after transplantation is associated with urinary excretion of transforming growth factor-beta1 and indicates poor long-term renal outcome. Transplantation78(5), 719–724 (2004).
  • Hollmen ME, Kyllonen LE, Inkinen KA, Lalla ML, Salmela KT. Urine neutrophil gelatinase-associated lipocalin is a marker of graft recovery after kidney transplantation. Kidney Int.79(1), 89–98 (2011).
  • Nakorchevsky A, Hewel JA, Kurian SM et al. Molecular mechanisms of chronic kidney transplant rejection via large-scale proteogenomic analysis of tissue biopsies. J. Am. Soc. Nephrol.21(2), 362–373 (2010).
  • Chen R, Sigdel TK, Li L et al. Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions. PLoS Comput. Biol.6(9), e1000940 (2010).
  • Yasui H, Yoshimura N, Kobayashi Y et al. Microstructural changes of bile canaliculi in canine liver: the effect of cold ischemia-reperfusion in orthotopic liver transplantation. Transplant. Proc.30(7), 3754–3757 (1998).
  • Chinese Human Liver Proteome Profiling Consortium. First insight into the human liver proteome from PROTEOME(SKY)-LIVER(Hu) 1.0, a publicly available database. J. Proteome Res.9(1), 79–94 (2010).
  • Mas VR, Maluf DG, Archer KJ, Yanek K, Bornstein K, Fisher RA. Proteomic analysis of HCV cirrhosis and HCV-induced HCC: identifying biomarkers for monitoring HCV-cirrhotic patients awaiting liver transplantation. Transplantation87(1), 143–152 (2009).
  • Emadali A, Muscatelli-Groux B, Delom F et al. Proteomic analysis of ischemia-reperfusion injury upon human liver transplantation reveals the protective role of IQGAP1. Mol. Cell. Proteomics5(7), 1300–1313 (2006).
  • Avellini C, Baccarani U, Trevisan G et al. Redox proteomics and immunohistology to study molecular events during ischemia-reperfusion in human liver. Transplant. Proc.39(6), 1755–1760 (2007).
  • Vascotto C, Cesaratto L, D’Ambrosio C et al. Proteomic analysis of liver tissues subjected to early ischemia/reperfusion injury during human orthotopic liver transplantation. Proteomics6(11), 3455–3465 (2006).
  • Hsu LW, Goto S, Nakano T et al. Immunosuppressive activity of serum taken from a liver transplant recipient after withdrawal of immunosuppressants. Transpl. Immunol.17(2), 137–146 (2007).
  • Taylor DO, Stehlik J, Edwards LB et al. Registry of the international society for heart and lung transplantation: twenty-sixth official adult heart transplant report-2009. J. Heart Lung Transplant.28(10), 1007–1022 (2009).
  • Mehra MR, Uber PA, Uber WE, Park MH, Scott RL. Anything but a biopsy: noninvasive monitoring for cardiac allograft rejection. Curr. Opin. Cardiol.17(2), 131–136 (2002).
  • Dos Remedios CG, Liew CC, Allen PD, Winslow RL, Van Eyk JE, Dunn MJ. Genomics, proteomics and bioinformatics of human heart failure. J. Muscle Res. Cell. Motil.24(4–6), 251–260 (2003).
  • Meirovich YF, Veinot JP, de Bold ML et al. Relationship between natriuretic peptides and inflammation: proteomic evidence obtained during acute cellular cardiac allograft rejection in humans. J. Heart Lung Transplant.27(1), 31–37 (2008).
  • Kienzl K, Sarg B, Golderer G et al. Proteomic profiling of acute cardiac allograft rejection. Transplantation88(4), 553–560 (2009).
  • Valantine H. Cardiac allograft vasculopathy after heart transplantation: risk factors and management. J. Heart Lung Transplant.23(5 Suppl.), S187–S193 (2004).
  • De Souza AI, Wait R, Mitchell AG, Banner NR, Dunn MJ, Rose ML. Heat shock protein 27 is associated with freedom from graft vasculopathy after human cardiac transplantation. Circ. Res.97(2), 192–198 (2005).
  • Corbett JM, Why HJ, Wheeler CH et al. Cardiac protein abnormalities in dilated cardiomyopathy detected by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis19(11), 2031–2042 (1998).
  • Estenne M, Hertz MI. Bronchiolitis obliterans after human lung transplantation. Am. J. Respir. Crit. Care Med.166(4), 440–444 (2002).
  • Nelsestuen GL, Martinez MB, Hertz MI, Savik K, Wendt CH. Proteomic identification of human neutrophil alpha-defensins in chronic lung allograft rejection. Proteomics5(6), 1705–1713 (2005).
  • Zhang Y, Wroblewski M, Hertz MI, Wendt CH, Cervenka TM, Nelsestuen GL. Analysis of chronic lung transplant rejection by MALDI-TOF profiles of bronchoalveolar lavage fluid. Proteomics6(3), 1001–1010 (2006).
  • Korfei M, Schmitt S, Ruppert C et al. Comparative proteomic analysis of lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and lung transplant donor lungs. J. Proteome Res.10(5), 2185–2205 (2011).
  • Egidi FM. Management of hyperglycaemia after pancreas transplantation: are new immunosuppressants the answer? Drugs65(2), 153–166 (2005).
  • Sutherland DE, Gruessner RW, Dunn DL et al. Lessons learned from more than 1,000 pancreas transplants at a single institution. Ann. Surg.233(4), 463–501 (2001).
  • Folli F, Guzzi V, Perego L et al. Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients’ skin which are normalized by kidney-pancreas transplantation. PLoS ONE5(3), e9923 (2010).
  • Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol. Cell Proteomics2(10), 1096–1103 (2003).
  • Candiano G, Musante L, Bruschi M et al. Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J. Am. Soc. Nephrol.17(11), 3139–3148 (2006).
  • Magistroni R, Ligabue G, Lupo V et al. Proteomic analysis of urine from proteinuric patients shows a proteolitic activity directed against albumin. Nephrol. Dial. Transplant.24(5), 1672–1681 (2009).
  • Musante L, Candiano G, Petretto A et al. Active focal segmental glomerulosclerosis is associated with massive oxidation of plasma albumin. J. Am. Soc. Nephrol.18(3), 799–810 (2007).
  • Thongboonkerd V, Chutipongtanate S, Kanlaya R. Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability. J. Proteome Res.5(1), 183–191 (2006).
  • Sigdel TK, Lau K, Schilling J, Sarwal MM. Optimizing protein recovery for urinary proteomics, a tool to monitor renal transplantation. Clin. Transplant.22(5), 617–623 (2008).
  • Khan A, Packer NH. Simple urinary sample preparation for proteomic analysis. J. Proteome Res.5(10), 2824–2838 (2006).
  • Mischak H, Kolch W, Aivaliotis M et al. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin. Appl.4(4), 464–478 (2010).
  • Engreitz JM, Morgan AA, Dudley JT et al. Content-based microarray search using differential expression profiles. BMC Bioinformatics11, 603 (2010).
  • Mons B, van Haagen H, Chichester C et al. The value of data. Nat. Genet.43(4), 281–283 (2011).
  • Dudley J, Butte AJ. Enabling integrative genomic analysis of high-impact human diseases through text mining. Pac. Symp. Biocomput.2008, 580–591 (2008).
  • Basic-Jukic N, Juric I, Kes P, Bubic-Filipi L, Brunetta B, Pasini J. [Arterial hypertension in renal transplant recipients]. Acta Med. Croatica61(2), 171–176 (2007).
  • Li L, Wadia P, Chen R et al. Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and ‘antibodyome’ measures. Proc. Natl Acad. Sci. USA106(11), 4148–4153 (2009).
  • Millan O, Benitez C, Guillen D et al. Biomarkers of immunoregulatory status in stable liver transplant recipients undergoing weaning of immunosuppressive therapy. Clin. Immunol.137(3), 337–346 (2010).
  • Kirk AD. Location, location, location: regional immune mechanisms critically influence rejection. Nat. Med.8(6), 553–555 (2002).
  • Ginsburg GS, McCarthy JJ. Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol.19(12), 491–496 (2001).
  • Goldfarb-Rumyantzev AS. Personalized medicine and prediction of outcome in kidney transplant. Am. J. Kidney Dis.56(5), 817–819 (2010).
  • Lampreabe I, Gainza de los Rios FJ, Arrieta Gutierrez A et al. Toward personalized medicine in renal transplantation. Transplant. Proc.42(8), 2864–2867 (2010).
  • Coto E, Tavira B. Pharmacogenetics of calcineurin inhibitors in renal transplantation. Transplantation88(3 Suppl.), S62–S67 (2009).
  • Wavamunno MD, Chapman JR. Individualization of immunosuppression: concepts and rationale. Curr. Opin. Organ Transplant.13(6), 604–608 (2008).
  • Hesselink DA, van Gelder T, van Schaik RH. The pharmacogenetics of calcineurin inhibitors: one step closer toward individualized immunosuppression? Pharmacogenomics6(4), 323–337 (2005).
  • Holt KE, Parkhill J, Mazzoni CJ et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella typhi. Nat. Genet.40(8), 987–993 (2008).
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet.10(1), 57–63 (2009).
  • Butte AJ. Medicine. The ultimate model organism. Science320(5874), 325–327 (2008).
  • Freue GV, Sasaki M, Meredith A et al. Proteomic signatures in plasma during early acute renal allograft rejection. Mol. Cell Proteomics9(9), 1954–1967 (2010).
  • Kurian SM, Heilman R, Mondala TS et al. Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood. PLoS ONE4(7), e6212 (2009).
  • Dai Y, Lv T, Wang K, Huang Y, Li D, Liu J. Detection of acute renal allograft rejection by analysis of renal tissue proteomics in rat models of renal transplantation. Saudi J. Kidney Dis. Transpl.19(6), 952–959 (2008).
  • Jahnukainen T, Malehorn D, Sun M et al. Proteomic analysis of urine in kidney transplant patients with BK virus nephropathy. J. Am. Soc. Nephrol.17(11), 3248–3256 (2006).
  • Quintana LF, Sole-Gonzalez A, Kalko SG et al. Urine proteomics to detect biomarkers for chronic allograft dysfunction. J. Am. Soc. Nephrol.20(2), 428–435 (2009).
  • Metzger J, Chatzikyrkou C, Broecker V et al. Diagnosis of subclinical and clinical acute T-cell-mediated rejection in renal transplant patients by urinary proteome analysis. Proteomics Clin. Appl.5(5–6), 322–333 (2011).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.