364
Views
25
CrossRef citations to date
0
Altmetric
Review

Current frontiers in clinical research application of MALDI imaging mass spectrometry

&
Pages 259-273 | Published online: 09 Jan 2014

References

  • Castain R, Slodzian G. [Optique corpusculaire – premiers essais de microanalyse par emission ionique secondaire]. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 255, 1893–1895 (1962).
  • Galle P. Sur une nouvelle methode d’analyse cellulaire utilisant le phenomene d’emission ionique secondaire. Ann. Phys. Biol. Med. 42, 83–94 (1970).
  • Morrison GH, Slodzian G. Ion microscopy. Anal. Chem. 47, 932–943 (1975).
  • Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 57, 2935–2939 (1985).
  • Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69(23), 4751–4760 (1997).
  • Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695), 471–473 (2004).
  • Eberlin LS, Norton I, Orringer D et al. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc. Natl Acad. Sci. USA 110(5), 1611–1616 (2013).
  • Schober Y, Guenther S, Spengler B, Römpp A. Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal. Chem. 84(15), 6293–6297 (2012).
  • Schober Y, Guenther S, Spengler B, Römpp A. High-resolution matrix-assisted laser desorption/ionization imaging of tryptic peptides from tissue. Rapid Commun. Mass Spectrom. 26(9), 1141–1146 (2012).
  • Spraggins JM, Caprioli RM. High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J. Am. Soc. Mass Spectrom. 22(6), 1022–1031 (2011).
  • Pól J, Strohalm M, Havlícek V, Volný M. Molecular mass spectrometry imaging in biomedical and life science research. Histochem. Cell Biol. 134(5), 423–443 (2010).
  • Goodwin RJ. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J. Proteomics 75(16), 4893–4911 (2012).
  • Jones EA, Deininger SO, Hogendoorn PC, Deelder AM, McDonnell LA. Imaging mass spectrometry statistical analysis. J. Proteomics 75(16), 4962–4989 (2012).
  • Deininger SO, Cornett DS, Paape R et al. Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal. Bioanal. Chem. 401(1), 167–181 (2011).
  • Murphy AJ, Axt JR, de Caestecker C et al. Molecular characterization of Wilms’ tumor from a resource-constrained region of sub-Saharan Africa. Int. J. Cancer 131(6), E983–E994 (2012).
  • Schwamborn K. Imaging mass spectrometry in biomarker discovery and validation. J. Proteomics 75(16), 4990–4998 (2012).
  • Rauser S, Deininger SO, Suckau D, Höfler H, Walch A. Approaching MALDI molecular imaging for clinical proteomic research: current state and fields of application. Expert Rev. Proteomics 7(6), 927–941 (2010).
  • Jones EA, Deininger SO, Hogendoorn PC, Deelder AM, McDonnell LA. Imaging mass spectrometry statistical analysis. J. Proteomics 75(16), 4962–4989 (2012).
  • Baker SG, Kramer BS, Srivastava S. Markers for early detection of cancer: statistical guidelines for nested case-control studies. BMC Med. Res. Methodol. 2, 4 (2002).
  • Seeley EH, Caprioli RM. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol. 29(3), 136–143 (2011).
  • Balluff B, Elsner M, Kowarsch A et al. Classification of HER2/neu status in gastric cancer using a breast-cancer derived proteome classifier. J. Proteome Res. 9(12), 6317–6322 (2010).
  • Djidja MC, Claude E, Snel MF et al. Novel molecular tumour classification using MALDI-mass spectrometry imaging of tissue micro-array. Anal. Bioanal. Chem. 397(2), 587–601 (2010).
  • Hardesty WM, Kelley MC, Mi D, Low RL, Caprioli RM. Protein signatures for survival and recurrence in metastatic melanoma. J. Proteomics 74(7), 1002–1014 (2011).
  • Hood BL, Conrads TP, Veenstra TD. Mass spectrometric analysis of formalin-fixed paraffin-embedded tissue: unlocking the proteome within. Proteomics 6(14), 4106–4114 (2006).
  • Schwartz SA, Reyzer ML, Caprioli RM. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass Spectrom. 38(7), 699–708 (2003).
  • Strohalm M, Strohalm J, Kaftan F et al. Poly[N-(2-hydroxypropyl)methacrylamide]-based tissue-embedding medium compatible with MALDI mass spectrometry imaging experiments. Anal. Chem. 83(13), 5458–5462 (2011).
  • Balluff B, Schöne C, Höfler H, Walch A. MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem. Cell Biol. 136(3), 227–244 (2011).
  • Walch A, Rauser S, Deininger SO, Höfler H. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem. Cell Biol. 130(3), 421–434 (2008).
  • McDonnell LA, Corthals GL, Willems SM, van Remoortere A, van Zeijl RJ, Deelder AM. Peptide and protein imaging mass spectrometry in cancer research. J. Proteomics 73(10), 1921–1944 (2010).
  • Chaurand P, Schwartz SA, Billheimer D, Xu BJ, Crecelius A, Caprioli RM. Integrating histology and imaging mass spectrometry. Anal. Chem. 76(4), 1145–1155 (2004).
  • Cornett DS, Mobley JA, Dias EC et al. A novel histology-directed strategy for MALDI-MS tissue profiling that improves throughput and cellular specificity in human breast cancer. Mol. Cell Proteomics 5(10), 1975–1983 (2006).
  • Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM. Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J. Am. Soc. Mass Spectrom. 19(8), 1069–1077 (2008).
  • Thomas A, Patterson NH, Laveaux Charbonneau J, Chaurand P. Orthogonal organic and aqueous-based washes of tissue sections to enhance protein sensitivity by MALDI imaging mass spectrometry. J. Mass Spectrom. 48(1), 42–48 (2013).
  • Mainini V, Angel PM, Magni F, Caprioli RM. Detergent enhancement of on-tissue protein analysis by matrix-assisted laser desorption/ionization imaging mass spectrometry. Rapid Commun. Mass Spectrom. 25(1), 199–204 (2011).
  • Shariatgorji M, Källback P, Gustavsson L et al. Controlled-pH tissue cleanup protocol for signal enhancement of small molecule drugs analyzed by MALDI-MS imaging. Anal. Chem. 84(10), 4603–4607 (2012).
  • Meriaux C, Franck J, Wisztorski M, Salzet M, Fournier I. Liquid ionic matrixes for MALDI mass spectrometry imaging of lipids. J. Proteomics 73(6), 1204–1218 (2010).
  • Gross JH. Mass Spectrometry: A Textbook (2nd Edition). Gross JH (Ed.). Springer Verlag, Heidelberg, Germany (2011).
  • Goodwin RJ. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J. Proteomics 75(16), 4893–4911 (2012).
  • Shanta SR, Zhou LH, Park YS, Kim YH, Kim Y, Kim KP. Binary matrix for MALDI imaging mass spectrometry of phospholipids in both ion modes. Anal. Chem. 83(4), 1252–1259 (2011).
  • García MC. The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high-performance liquid chromatography-electrospray mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 825(2), 111–123 (2005).
  • Amstalden van Hove ER, Smith DF, Heeren RM. A concise review of mass spectrometry imaging. J. Chromatogr. A 1217(25), 3946–3954 (2010).
  • Hankin JA, Barkley RM, Murphy RC. Sublimation as a method of matrix application for mass spectrometric imaging. J. Am. Soc. Mass Spectrom. 18(9), 1646–1652 (2007).
  • Jaskolla TW, Karas M, Roth U, Steinert K, Menzel C, Reihs K. Comparison between vacuum sublimed matrices and conventional dried droplet preparation in MALDI-TOF mass spectrometry. J. Am. Soc. Mass Spectrom. 20(6), 1104–1114 (2009).
  • Thomas A, Charbonneau JL, Fournaise E, Chaurand P. Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal. Chem. 84(4), 2048–2054 (2012).
  • Goodwin RJ, Macintyre L, Watson DG, Scullion SP, Pitt AR. A solvent-free matrix application method for matrix-assisted laser desorption/ionization imaging of small molecules. Rapid Commun. Mass Spectrom. 24(11), 1682–1686 (2010).
  • Goodwin RJ, Scullion P, Macintyre L, Watson DG, Pitt AR. Use of a solvent-free dry matrix coating for quantitative matrix-assisted laser desorption ionization imaging of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate in rat brain and quantitative analysis of the drug from laser microdissected tissue regions. Anal. Chem. 82(9), 3868–3873 (2010).
  • Casadonte R, Caprioli RM. Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat. Protoc. 6(11), 1695–1709 (2011).
  • McDonnell LA, van Remoortere A, de Velde N, van Zeijl RJ, Deelder AM. Imaging mass spectrometry data reduction: automated feature identification and extraction. J. Am. Soc. Mass Spectrom. 21(12), 1969–1978 (2010).
  • Deininger SO, Becker M, Suckau D. Tutorial: multivariate statistical treatment of imaging data for clinical biomarker discovery. Methods Mol. Biol. 656, 385–403 (2010).
  • Deininger SO, Ebert MP, Fütterer A, Gerhard M, Röcken C. MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J. Proteome Res. 7(12), 5230–5236 (2008).
  • Liu NQ, Braakman RB, Stingl C et al. Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue. J. Mammary Gland Biol. Neoplasia 17(2), 155–164 (2012).
  • Umar A, Luider TM, Foekens JA, Pasa-Tolic L. NanoLC-FT-ICR MS improves proteome coverage attainable for approximately 3000 laser-microdissected breast carcinoma cells. Proteomics 7(2), 323–329 (2007).
  • Imanishi SY, Kouvonen P, Smått JH et al. Phosphopeptide enrichment with stable spatial coordination on a titanium dioxide coated glass slide. Rapid Commun. Mass Spectrom. 23(23), 3661–3667 (2009).
  • Reyzer ML, Caldwell RL, Dugger TC et al. Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics. Cancer Res. 64(24), 9093–9100 (2004).
  • Pierson J, Norris JL, Aerni HR, Svenningsson P, Caprioli RM, Andrén PE. Molecular profiling of experimental Parkinson’s disease: direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry. J. Proteome Res. 3(2), 289–295 (2004).
  • Reiber DC, Grover TA, Brown RS. Identifying proteins using matrix-assisted laser desorption/ionization in-source fragmentation data combined with database searching. Anal. Chem. 70(4), 673–683 (1998).
  • Suckau D, Resemann A. T3-sequencing: targeted characterization of the N- and C-termini of undigested proteins by mass spectrometry. Anal. Chem. 75(21), 5817–5824 (2003).
  • Suckau D, Resemann A. MALDI top-down sequencing: calling N- and C-terminal protein sequences with high confidence and speed. J. Biomol. Tech. 20(5), 258–262 (2009).
  • Demeure K, Quinton L, Gabelica V, De Pauw E. Rational selection of the optimum MALDI matrix for top-down proteomics by in-source decay. Anal. Chem. 79(22), 8678–8685 (2007).
  • Calligaris D, Longuespée R, Debois D et al. Selected protein monitoring in histological sections by targeted MALDI-FTICR in-source decay imaging. Anal. Chem. 85(4), 2117–2126 (2013).
  • Bonnel D, Longuespee R, Franck J et al. Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI-MSI: application to prostate cancer. Anal. Bioanal. Chem. 401(1), 149–165 (2011).
  • Debois D, Bertrand V, Quinton L, De Pauw-Gillet MC, De Pauw E. MALDI-in source decay applied to mass spectrometry imaging: a new tool for protein identification. Anal. Chem. 82(10), 4036–4045 (2010).
  • Rauser S, Marquardt C, Balluff B et al. Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J. Proteome Res. 9(4), 1854–1863 (2010).
  • Meding S, Martin K, Gustafsson OJ et al. Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues. J. Proteome Res. 12(1), 308–315 (2013).
  • Gustafsson JO, Eddes JS, Meding S et al. Internal calibrants allow high accuracy peptide matching between MALDI imaging MS and LC-MS/MS. J. Proteomics 75(16), 5093–5105 (2012).
  • Djidja MC, Claude E, Snel MF et al. MALDI-ion mobility separation-mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin-fixed, paraffin-embedded pancreatic adenocarcinoma tissue sections. J. Proteome Res. 8(10), 4876–4884 (2009).
  • Groseclose MR, Massion PP, Chaurand P, Caprioli RM. High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8(18), 3715–3724 (2008).
  • Djidja MC, Francese S, Loadman PM et al. Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections. Proteomics 9(10), 2750–2763 (2009).
  • Stauber J, MacAleese L, Franck J et al. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 21(3), 338–347 (2010).
  • Grüner BM, Hahne H, Mazur PK et al. MALDI imaging mass spectrometry for in situ proteomic analysis of preneoplastic lesions in pancreatic cancer. PLoS ONE 7(6), e39424 (2012).
  • Quanico J, Franck J, Dauly C et al. Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. J. Proteomics 79, 200–218 (2013).
  • Hamm G, Bonnel D, Legouffe R et al. Quantitative mass spectrometry imaging of propranolol and olanzapine using tissue extinction calculation as normalization factor. J. Proteomics 75(16), 4952–4961 (2012).
  • Stoeckli M, Staab D, Schweitzer A, Gardiner J, Seebach D. Imaging of a beta-peptide distribution in whole-body mice sections by MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 18(11), 1921–1924 (2007).
  • Sugiura Y, Konishi Y, Zaima N et al. Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J. Lipid Res. 50(9), 1776–1788 (2009).
  • Takai N, Tanaka Y, Inazawa K, Saji H. Quantitative analysis of pharmaceutical drug distribution in multiple organs by imaging mass spectrometry. Rapid Commun. Mass Spectrom. 26(13), 1549–1556 (2012).
  • Reich RF, Cudzilo K, Levisky JA, Yost RA. Quantitative MALDI-MS(n) analysis of cocaine in the autopsied brain of a human cocaine user employing a wide isolation window and internal standards. J. Am. Soc. Mass Spectrom. 21(4), 564–571 (2010).
  • Castellino S. MALDI imaging MS analysis of drug distribution in tissue: the right time!(?). Bioanalysis 4(21), 2549–2551 (2012).
  • Trede D, Schiffler S, Becker M et al. Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: three-dimensional spatial segmentation of mouse kidney. Anal. Chem. 84(14), 6079–6087 (2012).
  • Sinha TK, Khatib-Shahidi S, Yankeelov TE et al. Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat. Methods 5(1), 57–59 (2008).
  • Andersson M, Groseclose MR, Deutch AY, Caprioli RM. Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat. Methods 5(1), 101–108 (2008).
  • Chughtai K, Jiang L, Greenwood TR et al. Fiducial markers for combined 3-dimensional mass spectrometric and optical tissue imaging. Anal. Chem. 84(4), 1817–1823 (2012).
  • Seeley EH, Caprioli RM. 3D imaging by mass spectrometry: a new frontier. Anal. Chem. 84(5), 2105–2110 (2012).
  • Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 16(7), 1093–1099 (2005).
  • McKinley ET, Smith RA, Zhao P et al. 3′-deoxy-3′-18F-fluorothymidine PET predicts response to V600EBRAF-targeted therapy in preclinical models of colorectal cancer. J. Nucl. Med. 54(3), 424–430 (2013).
  • Goodwin RJ, Mackay CL, Nilsson A et al. Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal. Chem. 83(24), 9694–9701 (2011).
  • Scheuer W, van Dam GM, Dobosz M, Schwaiger M, Ntziachristos V. Drug-based optical agents: infiltrating clinics at lower risk. Sci. Transl. Med. 4(134), 134ps11 (2012).
  • Schwartz SA, Weil RJ, Thompson RC et al. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res. 65(17), 7674–7681 (2005).
  • Schwartz SA, Weil RJ, Johnson MD, Toms SA, Caprioli RM. Protein profiling in brain tumors using mass spectrometry: feasibility of a new technique for the analysis of protein expression. Clin. Cancer Res. 10(3), 981–987 (2004).
  • Lemaire R, Menguellet SA, Stauber J et al. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J. Proteome Res. 6(11), 4127–4134 (2007).
  • Cazares LH, Troyer D, Mendrinos S et al. Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin. Cancer Res. 15(17), 5541–5551 (2009).
  • Chaurand P, DaGue BB, Pearsall RS, Threadgill DW, Caprioli RM. Profiling proteins from azoxymethane-induced colon tumors at the molecular level by matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 1(10), 1320–1326 (2001).
  • Balluff B, Rauser S, Ebert MP, Siveke JT, Höfler H, Walch A. Direct molecular tissue analysis by MALDI imaging mass spectrometry in the field of gastrointestinal disease. Gastroenterology 143(3), 544–549.e1 (2012).
  • Elsner M, Rauser S, Maier S et al. MALDI imaging mass spectrometry reveals COX7A2, TAGLN2 and S100-A10 as novel prognostic markers in Barrett’s adenocarcinoma. J. Proteomics 75(15), 4693–4704 (2012).
  • Balluff B, Rauser S, Meding S et al. MALDI imaging identifies prognostic seven-protein signature of novel tissue markers in intestinal-type gastric cancer. Am. J. Pathol. 179(6), 2720–2729 (2011).
  • Stoeckli M, Staab D, Staufenbiel M, Wiederhold KH, Signor L. Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal. Biochem. 311(1), 33–39 (2002).
  • Senyo SE, Steinhauser ML, Pizzimenti CL et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432), 433–436 (2013).
  • Yanagisawa K, Shyr Y, Xu BJ et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 362(9382), 433–439 (2003).
  • Nipp M, Elsner M, Balluff B et al. S100-A10, thioredoxin, and S100-A6 as biomarkers of papillary thyroid carcinoma with lymph node metastasis identified by MALDI imaging. J. Mol. Med. 90(2), 163–174 (2012).
  • Meding S, Balluff B, Elsner M et al. Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer. J. Pathol. 228(4), 459–470 (2012).
  • Bauer JA, Chakravarthy AB, Rosenbluth JM et al. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin. Cancer Res. 16(2), 681–690 (2010).
  • Cole LM, Djidja MC, Bluff J et al. Investigation of protein induction in tumour vascular targeted strategies by MALDI MSI. Methods 54(4), 442–453 (2011).
  • Meding S, Nitsche U, Balluff B et al. Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J. Proteome Res. 11(3), 1996–2003 (2012).
  • Kim HK, Reyzer ML, Choi IJ et al. Gastric cancer-specific protein profile identified using endoscopic biopsy samples via MALDI mass spectrometry. J. Proteome Res. 9(8), 4123–4130 (2010).
  • Oezdemir RF, Gaisa NT, Lindemann-Docter K et al. Proteomic tissue profiling for the improvement of grading of noninvasive papillary urothelial neoplasia. Clin. Biochem. 45(1–2), 7–11 (2012).
  • Schwamborn K, Krieg RC, Jirak P et al. Application of MALDI imaging for the diagnosis of classical Hodgkin lymphoma. J. Cancer Res. Clin. Oncol. 136(11), 1651–1655 (2010).
  • Morita Y, Ikegami K, Goto-Inoue N et al. Imaging mass spectrometry of gastric carcinoma in formalin-fixed paraffin-embedded tissue microarray. Cancer Sci. 101(1), 267–273 (2010).
  • Willems SM, van Remoortere A, van Zeijl R, Deelder AM, McDonnell LA, Hogendoorn PC. Imaging mass spectrometry of myxoid sarcomas identifies proteins and lipids specific to tumour type and grade, and reveals biochemical intratumour heterogeneity. J. Pathol. 222(4), 400–409 (2010).
  • Jones EA, van Remoortere A, van Zeijl RJ et al. Multiple statistical analysis techniques corroborate intratumor heterogeneity in imaging mass spectrometry datasets of myxofibrosarcoma. PLoS ONE 6(9), e24913 (2011).
  • Gerlinger M, Rowan AJ, Horswell S et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).
  • Prideaux B, Stoeckli M. Mass spectrometry imaging for drug distribution studies. J. Proteomics 75(16), 4999–5013 (2012).
  • Castellino S, Groseclose MR, Wagner D. MALDI imaging mass spectrometry: bridging biology and chemistry in drug development. Bioanalysis 3(21), 2427–2441 (2011).
  • Ait-Belkacem R, Sellami L, Villard C, DePauw E, Calligaris D, Lafitte D. Mass spectrometry imaging is moving toward drug protein co-localization. Trends Biotechnol. 30(9), 466–474 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.