245
Views
36
CrossRef citations to date
0
Altmetric
Special Report

Notch signaling in lung cancer

&
Pages 533-540 | Published online: 10 Jan 2014

References

  • Rosti G, Bevilacqua G, Bidoli P, Portalone L, Santo A, Genestreti G. Small cell lung cancer. Ann. Oncol.17(Suppl. 2ii), 5–10 (2006).
  • Govindan R, Page N, Morgensztern D et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J. Clin. Oncol.24(28), 4539–4544 (2006).
  • Shigematsu H, Lin L, Takahashi T et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl. Cancer Inst.97(5), 339–346 (2005).
  • Schrump DS, Giaccone D, Kelsey CR, Marks LB. Non-small-cell lung cancer. In: Cancer, Principles & Practice of Oncology (8th Edition). De Vita VT Jr, Lawrence TS, Rosemberg SA (Eds). Lippincot Williams & Wilkins, PA, USA, 896–946 (2008).
  • Krug LM, Kris MG, Rosenzweig K, Travis WD. Small cell and other neuroendocrine tumors of the lung. In: Cancer, Principles & Practice of Oncology (8th Edition). De Vita VT Jr, Lawrence TS, Rosemberg SA (Eds). Lippincot Williams & Wilkins, PA, USA, 946–971 (2008).
  • Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol.17, 387–403 (2001).
  • Virchow RLK. Cellular Pathology. Berlin, Germany (1859).
  • Giangreco A, Shen H, Reynolds SD, Stripp BR. Molecular phenotype of airway side population cells. Am. J. Physiol. Lung. Cell. Mol. Physiol.286(4), L624–L630 (2004).
  • Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am. J. Pathol.164(2), 577–588 (2004).
  • Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am. J. Pathol.161(1), 173–182 (2002).
  • Kim CF, Jackson EL, Woolfenden AE et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell121(6), 823–835 (2005).
  • Meng RD, Shelton CC, Li YM et al. γ-secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res.69(2), 573–582 (2009).
  • Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer6(5), 963–968 (1953).
  • Wistuba II, Lam S, Behrens C et al. Molecular damage in the bronchial epithelium of current and former smokers. J. Natl. Cancer Inst.89(18), 1366–1373 (1997).
  • Bunting KD. ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cell20(1), 11–20 (2002).
  • Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res.67(10), 4827–4833 (2007).
  • Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell129(3), 465–472 (2007).
  • Brown JM. Tumor hypoxia in cancer therapy. Methods Enzymol.435, 297–321 (2007).
  • Milas L, Hittelman WN. Cancer stem cells and tumor response to therapy: current problems and future prospects. Semin. Radiat. Oncol.19(2), 96–105 (2009).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444(7120), 756–760 (2006).
  • Li Z, Bao S, Wu Q et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell15(6), 501–513 (2009).
  • Eliasz S, Liang S, Chen Y et al. Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. Oncogene29(17), 2488–2498 (2010).
  • Gustafsson MV, Zheng X, Pereira T et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell9(5), 617–628 (2005).
  • Androutsellis-Theotokis A, Leker RR, Soldner F et al. Notch signaling regulates stem cell numbers in vitro and in vivo. Nature442(7104), 823–826 (2006).
  • Harrison H, Farnie G, Howell SJ et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res.70(2), 709–718 (2010).
  • Sullivan JP, Spinola M, Dodge M et al. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res.70(23), 9937–9948 (2010).
  • Miele L. Notch signaling. Clin. Cancer Res.12(4), 1074–1079 (2006).
  • Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC. Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol.14(4), 295–300 (2007).
  • Chen Y, De Marco MA, Graziani I et al. Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Res.67(17), 7954–7959 (2007).
  • Graziani I, Eliasz S, De Marco MA et al. Opposite effects of Notch-1 and Notch-2 on mesothelioma cell survival under hypoxia are exerted through the Akt pathway. Cancer Res.68(23), 9678–9685 (2008).
  • Weng AP, Millholland JM, Yashiro-Ohtani Y et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev.20(15), 2096–2109 (2006).
  • Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T. Notch1 is essential for postimplantation development in mice. Genes Dev.8(6), 707–719 (1994).
  • Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR, Tsujimoto Y. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development126(15), 3415–3424 (1999).
  • Fan X, Mikolaenko I, Elhassan I et al. Notch1 and Notch2 have opposite effects on embryonal brain tumor growth. Cancer Res.64(21), 7787–7793 (2004).
  • Ito T, Udaka N, Yazawa T et al. Basic helix–loop–helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development127(18), 3913–3921 (2000).
  • Donnem T, Andersen S, Al-Shibli K et al. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer: coexpression of Notch-1 and vascular endothelial growth factor-A predicts poor survival. Cancer116(24), 5676–5685 (2010).
  • Sriuranpong V, Borges MW, Ravi RK et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res.61(7), 3200–3205 (2001).
  • Nakakura EK, Sriuranpong VR, Kunnimalaiyaan M et al. Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by notch signaling. J. Clin. Endocrinol. Metab.90(7), 4350–4356 (2005).
  • Kunnimalaiyaan M, Yan S, Wong F, Zhang YW, Chen H. Hairy enhancer of split-1 (HES-1), a Notch1 effector, inhibits the growth of carcinoid tumor cells. Surgery138(6), 1137–1142 (2005).
  • Zheng Q, Qin H, Zhang H et al. Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncol. Rep.17(4), 847–852 (2007).
  • Jiang X, Zhou JH, Deng ZH, Qu XH, Jiang HY, Liu Y. Expression and significance of Notch1, Jagged1 and VEGF in human non-small cell lung cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban32(6), 1031–1036 (2007).
  • Westhoff B, Colaluca IN, D’Ario G et al. Alterations of the Notch pathway in lung cancer. Proc. Natl Acad. Sci. USA106(52), 22293–22298 (2009).
  • Chen Y, Li D, Liu H et al. Notch-1 signaling facilitates survivin expression in human non-small cell lung cancer cells. Cancer Biol. Ther.11(1), 14–21 (2011).
  • Baumgart A, Seidl S, Vlachou P et al. ADAM17 regulates epidermal growth factor receptor expression through the activation of Notch1 in non-small cell lung cancer. Cancer Res.70(13), 5368–5378 (2010).
  • Dang TP, Gazdar AF, Virmani AK et al. Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. J. Natl Cancer Inst.92(16), 1355–1357 (2000).
  • Kees UR, Mulcahy MT, Willoughby ML. Intrathoracic carcinoma in an 11-year-old girl showing a translocation t(15;19). Am. J. Pediatr. Hematol. Oncol.13(4), 459–464 (1991).
  • Lee AC, Kwong YI, Fu KH, Chan GC, Ma L, Lau YL. Disseminated mediastinal carcinoma with chromosomal translocation (15;19). A distinctive clinicopathologic syndrome. Cancer72(7), 2273–2276 (1993).
  • Kubonishi I, Takehara N, Iwata J et al. Novel t(15;19)(q15;p13) chromosome abnormality in a thymic carcinoma. Cancer Res.51(12), 3327–3328 (1991).
  • Haruki N, Kawaguchi KS, Eichenberger S et al. Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Res.65(9), 3555–3561 (2005).
  • Konishi J, Yi F, Chen X, Vo H, Carbone DP, Dang TP. Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene29(4), 589–596 (2010).
  • Costa DB, Halmos B, Kumar A et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med.4(10), 1669–1679 (2007).
  • Konishi J, Kawaguchi KS, Vo H et al. γ-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res.67(17), 8051–8057 (2007).
  • Lin L, Mernaugh R, Yi F, Blum D, Carbone DP, Dang TP. Targeting specific regions of the Notch3 ligand-binding domain induces apoptosis and inhibits tumor growth in lung cancer. Cancer Res.70(2), 632–638 (2010).
  • Dang TP, Eichenberger S, Gonzalez A, Olson S, Carbone DP. Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene22(13), 1988–1997 (2003).
  • Moellering RE, Cornejo M, Davis TN et al. Direct inhibition of the NOTCH transcription factor complex. Nature462(7270), 182–188 (2009).
  • Wu Y, Cain-Hom C, Choy L et al. Therapeutic antibody targeting of individual Notch receptors. Nature464(7291), 1052–1057 (2010).
  • Riccio O, van Gijn ME, Bezdek AC et al. Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep.9(4), 377–383 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.