349
Views
48
CrossRef citations to date
0
Altmetric
Theme: Neurologic - Review

Predictive and prognostic factors for gliomas

, , , , &
Pages 781-789 | Published online: 10 Jan 2014

References

  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol.114(2), 97–109 (2007).
  • He J, Mokhtari K, Sanson M et al. Glioblastomas with an oligodendroglial component: a pathological and molecular study. J. Neuropathol. Exp. Neurol.60(9), 863–871 (2001).
  • Coons SW, Johnson PC, Scheithauer BW, Yates AJ, Pearl DK. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer79(7), 1381–1393 (1997).
  • Verhaak RG, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell17(1), 98–110 (2010).
  • Noushmehr H, Weisenberger DJ, Diefes K et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell17(5), 510–522 (2010).
  • Bromberg JE, van den Bent MJ. Oligodendrogliomas: molecular biology and treatment. Oncologist14(2), 155–163 (2009).
  • Jenkins RB, Blair H, Ballman KV et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res.66(20), 9852–9861 (2006).
  • Cairncross JG, Ueki K, Zlatescu MC et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J. Natl Cancer Inst.90(19), 1473–1479 (1998).
  • Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP. Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am. J. Pathol.145(5), 1175–1190 (1994).
  • Bauman GS, Ino Y, Ueki K et al. Allelic loss of chromosome 1p and radiotherapy plus chemotherapy in patients with oligodendrogliomas. Int. J. Radiat. Oncol. Biol. Phys.48(3), 825–830 (2000).
  • Cairncross G, Berkey B, Shaw E et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J. Clin. Oncol.24(18), 2707–2714 (2006).
  • Kaloshi G, Everhard S, Laigle-Donadey F et al. Genetic markers predictive of chemosensitivity and outcome in gliomatosis cerebri. Neurology70(8), 590–595 (2008).
  • van den Bent MJ, Carpentier AF, Brandes AA et al. Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer Phase III trial. J. Clin. Oncol.24(18), 2715–2722 (2006).
  • Weller M, Berger H, Hartmann C et al. Combined 1p/19q loss in oligodendroglial tumors: predictive or prognostic biomarker? Clin. Cancer Res.13(23), 6933–6937 (2007).
  • Ricard D, Kaloshi G, Amiel-Benouaich A et al. Dynamic history of low-grade gliomas before and after temozolomide treatment. Ann. Neurol.61(5), 484–490 (2007).
  • Ducray F, El Hallani S, Idbaih A. Diagnostic and prognostic markers in gliomas. Curr. Opin. Oncol.21(6), 537–542 (2009).
  • Ichimura K, Vogazianou AP, Liu L et al. 1p36 is a preferential target of chromosome 1 deletions in astrocytic tumours and homozygously deleted in a subset of glioblastomas. Oncogene27(14), 2097–2108 (2008).
  • Idbaih A, Marie Y, Pierron G et al. Two types of chromosome 1p losses with opposite significance in gliomas. Ann. Neurol.58(3), 483–487 (2005).
  • Griffin CA, Burger P, Morsberger L et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J. Neuropathol. Exp. Neurol.65(10), 988–994 (2006).
  • Benetkiewicz M, Idbaih A, Cousin PY et al. NOTCH2 is neither rearranged nor mutated in t(1;19) positive oligodendrogliomas. PLoS One4(1), e4107 (2009).
  • Idbaih A, Criniere E, Marie Y et al. Gene amplification is a poor prognostic factor in anaplastic oligodendrogliomas. Neuro. Oncol.10(4), 540–547 (2008).
  • Idbaih A, Marie Y, Lucchesi C et al. BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int. J. Cancer122(8), 1778–1786 (2008).
  • Brandes AA, Tosoni A, Cavallo G et al. Correlations between O6-methylguanine DNA methyltransferase promoter methylation status, 1p and 19q deletions, and response to temozolomide in anaplastic and recurrent oligodendroglioma: a prospective GICNO study. J. Clin. Oncol.24(29), 4746–4753 (2006).
  • Mollemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int. J. Cancer113(3), 379–385 (2005).
  • Ducray F, Idbaih A, de Reynies A et al. Anaplastic oligodendrogliomas with 1p/19q codeletion have a proneural gene expression profile. Mol. Cancer7, 41 (2008).
  • Phillips HS, Kharbanda S, Chen R et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell9(3), 157–173 (2006).
  • Ducray F, Criniere E, Idbaih A et al. α-Internexin expression identifies 1p/19q codeleted gliomas. Neurology72(2), 156–161 (2009).
  • Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med.352(10), 997–1003 (2005).
  • Esteller M, Garcia-Foncillas J, Andion E et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med.343(19), 1350–1354 (2000).
  • Karayan-Tapon L, Quillien V, Guilhot J et al. Prognostic value of O6-methylguanine-DNA methyltransferase status in glioblastoma patients, assessed by five different methods. J. Neurooncol.97(3), 311–322 (2009).
  • Rivera AL, Pelloski CE, Gilbert MR et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro. Oncol.12(2), 116–121 (2010).
  • Stupp R, Hegi ME, Mason WP et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol.10(5), 459–466 (2009).
  • Glas M, Happold C, Rieger J et al. Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. J. Clin. Oncol.27(8), 1257–1261 (2009).
  • van den Bent MJ, Dubbink HJ, Sanson M et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: a report from EORTC Brain Tumor Group Study 26951. J. Clin. Oncol.27(35), 5881–5886 (2009).
  • Wick W, Hartmann C, Engel C et al. NOA-04 randomized Phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J. Clin. Oncol.27(35), 5874–5880 (2009).
  • Ducray F, Del Rio MS, Carpentier C et al. Up-front temozolomide in elderly patients with anaplastic oligodendroglioma and oligoastrocytoma. J. Neurooncol.101(3), 457–462 (2011).
  • Brandes AA, Franceschi E, Tosoni A et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol.26(13), 2192–2197 (2008).
  • Everhard S, Kaloshi G, Criniere E et al. MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann. Neurol.60(6), 740–743 (2006).
  • Everhard S, Tost J, El Abdalaoui H et al. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro. Oncol.11(4), 348–356 (2009).
  • Parsons DW, Jones S, Zhang X et al. An integrated genomic analysis of human glioblastoma multiforme. Science321(5897), 1807–1812 (2008).
  • Kang MR, Kim MS, Oh JE et al. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int. J. Cancer125(2), 353–355 (2009).
  • Yan H, Parsons DW, Jin G et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med.360(8), 765–773 (2009).
  • Sanson M, Marie Y, Paris S et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J. Clin. Oncol.27(25), 4150–4154 (2009).
  • Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin. Cancer Res.15(19), 6002–6007 (2009).
  • Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am. J. Pathol.174(4), 1149–1153 (2009).
  • Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol.116(6), 597–602 (2008).
  • Bleeker FE, Lamba S, Leenstra S et al. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum. Mutat.30(1), 7–11 (2009).
  • Mardis ER, Ding L, Dooling DJ et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med.361(11), 1058–1066 (2009).
  • Marcucci G, Maharry K, Wu YZ et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol.28(14), 2348–2355 (2010).
  • Ward PS, Patel J, Wise DR et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell17(3), 225–234 (2010).
  • Hartmann C, Meyer J, Balss J et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol.118(4), 469–474 (2009).
  • Labussiere M, Idbaih A, Wang XW et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology74(23), 1886–1890 (2010).
  • van den Bent MJ, Dubbink HJ, Marie Y et al. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin. Cancer Res.16(5), 1597–1604 (2010).
  • Dubbink HJ, Taal W, van Marion R et al. IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology73(21), 1792–1795 (2009).
  • Houillier C, Wang X, Kaloshi G, Delattre JY. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology75(17), 1560–1566 (2010).
  • Ichimura K, Pearson DM, Kocialkowski S et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro. Oncol.11(4), 341–347 (2009).
  • Zhao S, Lin Y, Xu W et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science324(5924), 261–265 (2009).
  • Dang L, White DW, Gross S et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature462(7274), 739–744 (2009).
  • Aghili M, Zahedi F, Rafiee E. Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J. Neurooncol.91(2), 233–236 (2009).
  • Latini A, Scussiato K, Rosa RB et al.D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. Eur. J. Neurosci.17(10), 2017–2022 (2003).
  • Ducray F, Marie Y, Sanson M. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med.360(21), 2248; author reply 2249 (2009).
  • Capper D, Weissert S, Balss J et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol.20(1), 245–254 (2009).
  • Kato Y, Jin G, Kuan CT, McLendon RE, Yan H, Bigner DD. A monoclonal antibody IMab-1 specifically recognizes IDH1R132H, the most common glioma-derived mutation. Biochem. Biophys. Res. Commun.390(3), 547–551 (2009).
  • Gross S, Cairns RA, Minden MD et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med.207(2), 339–344 (2010).
  • Lee Y, Scheck AC, Cloughesy TF et al. Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age. BMC Med. Genomics1, 52 (2008).
  • Colman H, Zhang L, Sulman EP et al. A multigene predictor of outcome in glioblastoma. Neuro. Oncol.12(1), 49–57 (2010).
  • Gravendeel LA, Kouwenhoven MC, Gevaert O et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res.69(23), 9065–9072 (2009).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444(7120), 756–760 (2006).
  • Liu G, Yuan X, Zeng Z et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer5, 67 (2006).
  • Beier D, Rohrl S, Pillai DR et al. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res.68(14), 5706–5715 (2008).
  • Murat A, Migliavacca E, Gorlia T et al. Stem cell-related ‘self-renewal’ signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol.26(18), 3015–3024 (2008).
  • Pallini R, Ricci-Vitiani L, Banna GL et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin. Cancer Res.14(24), 8205–8212 (2008).
  • Kelly JJ, Blough MD, Stechishin OD et al. Oligodendroglioma cell lines containing t(1;19)(q10;p10). Neuro. Oncol.12(7), 745–755 (2010).
  • Mehrian-Shai R, Chen CD, Shi T et al. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc. Natl Acad. Sci. USA104(13), 5563–5568 (2007).
  • Hormigo A, Gu B, Karimi S et al. YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin. Cancer Res.12(19), 5698–5704 (2006).
  • Jung CS, Foerch C, Schanzer A et al. Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain130(Pt 12), 3336–3341 (2007).
  • Batchelor TT, Sorensen AG, di Tomaso E et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11(1), 83–95 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.