1,834
Views
157
CrossRef citations to date
0
Altmetric
Review

Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases

, , &
Pages 729-746 | Published online: 10 Jan 2014

References

  • Orlowski S, Belehradek J, Paoletti C, Mir LM. Transient electropermeabilization of cells in culture – increase of the cyto-toxicity of anticancer drugs. Biochem. Pharmacol.37(24), 4727–4733 (1988).
  • Mir LM, Orlowski S, Belehradek J, Paoletti C. Electrochemotherapy potentiation of antitumor effect of bleomycin by local electric pulses. Eur. J. Cancer27(1), 68–72 (1991).
  • Sersa G, Cemazar M, Miklavcic D, Rudolf Z. Electrochemotherapy of tumours. Radiol. Oncol.40(3), 163–174 (2006).
  • Sersa G. The state-of-the-art of electrochemotherapy before the ESOPE study; advantages and clinical uses. EJC Suppl.4(11), 52–59 (2006).
  • Marty M, Sersa G, Garbay JR et al. Electrochemotherapy – an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. EJC Suppl.4(11), 3–13 (2006).
  • Quaglino P, Mortera C, Osella-Abate S et al. Electrochemotherapy with intravenous bleomycin in the local treatment of skin melanoma metastases. Ann. Surg. Oncol.15(8), 2215–2222 (2008).
  • Mir LM, Gehl J, Sersa G et al. Standard operating procedures of the electrochemotherapy: instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the Cliniporator™ by means of invasive or non-invasive electrodes. EJC Suppl.4(11), 14–25 (2006).
  • Mir LM, Devauchelle P, Quintin-Colonna F et al. First clinical trial of cat soft-tissue sarcomas treatment by electrochemotherapy. Br. J. Cancer76(12), 1617–1622 (1997).
  • Rols MP, Tamzali Y, Teissie J. Electrochemotherapy of horses. A preliminary clinical report. Bioelectrochemistry55(1–2), 101–105 (2002).
  • Tozon N, Kodre V, Sersa G, Cemazar M. Effective treatment of perianal tumors in dogs with electrochemotherapy. Anticancer Res.25(2A), 839–845 (2005).
  • Spugnini EP, Vincenzi B, Baldi F, Citro G, Baldi A. Adjuvant electrochemotherapy for the treatment of incompletely resected canine mast cell tumors. Anticancer Res.26(6B), 4585–4589 (2006).
  • Spugnini EP, Baldi A, Vincenzi B et al. Intraoperative versus postoperative electrochemotherapy in high grade soft tissue sarcomas: a preliminary study in a spontaneous feline model. Cancer Chemother. Pharmacol.59(3), 375–381 (2007).
  • Cemazar M, Tamzali Y, Sersa G et al. Electrochemotherapy in veterinary oncology. J. Vet. Intern. Med.22(4), 826–831 (2008).
  • Kodre V, Cemazar M, Pecar J, Sersa G, Cor A, Tozon N. Electrochemotherapy compared to surgery for treatment of canine mast cell tumours. In Vivo23(1), 55–62 (2009).
  • Allegretti JP, Panje WR. Electroporation therapy for head and neck cancer including carotid artery involvement. Laryngoscope111(1), 52–56 (2001).
  • Rodriguez-Cuevas S, Barroso-Bravo S, Almanza-Estrada J, Cristobal-Martinez L, Gonzalez-Rodriguez E. Electrochemotherapy in primary and metastatic skin tumors: Phase II trial using intralesional bleomycin. Arch. Med. Res.32(4), 273–276 (2001).
  • Rols MP, Bachaud JM, Giraud P, Chevreau C, Roche H, Teissie J. Electrochemotherapy of cutaneous metastases in malignant melanoma. Melanoma Res.10(5), 468–474 (2000).
  • Burian M, Formanek M, Regele H. Electroporation therapy in head and neck cancer. Acta Otolaryngol. (Stockh.)123(2), 264–268 (2003).
  • Bloom DC, Goldfarb PM. The role of intratumour therapy with electroporation and bleomycin in the management of advanced squamous cell carcinoma of the head and neck. Eur. J. Surg. Oncol.31(9), 1029–1035 (2005).
  • Byrne CM, Thompson JF, Johnston H et al. Treatment of metastatic melanoma using electroporation therapy with bleomycin (electrochemotherapy). Melanoma Res.15(1), 45–51 (2005).
  • Tijink BM, De Bree R, Van D, Leemans CR. How we do it: chemo-electroporation in the head and neck for otherwise untreatable patients. Clin. Otolaryngol.31(5), 447–451 (2006).
  • Sadadcharam M, Soden DM, O’Sullivan GC. Electrochemotherapy: an emerging cancer treatment. Intl. J. Hyperthermia24(3), 263–273 (2008).
  • Möller MG, Salwa S, Soden DM, O’Sullivan GC. Electrochemotherapy as an adjunct or alternative to other treatments for unresectable or in-transit melanoma. Exp. Rev. Anticancer Ther.9(11), 1611–1630 (2009).
  • Heller R, Gilbert R, Jaroszeski MJ. Clinical applications of electrochemotherapy. Adv. Drug Deliv. Rev.35(1), 119–129 (1999).
  • Heller R, Jaroszeski MJ, Reintgen DS et al. Treatment of cutaneous and subcutaneous tumors with electrochemotherapy using intralesional bleomycin. Cancer83(1), 148–157 (1998).
  • Gothelf A, Mir LM, Gehl J. Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev.29(5), 371–387 (2003).
  • Testori A, Rutkowski P, Marsden J et al. Surgery and radiotherapy in the treatment of cutaneous melanoma. Ann. Oncol.20, 22–29 (2009).
  • Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim. Biophys. Acta1088(1), 131–134 (1991).
  • Rols MP, Delteil C, Golzio M, Dumond P, Cros S, Teissie J. In vivo electrically mediated protein and gene transfer in murine melanoma. Nat. Biotechnol.16(2), 168–171 (1998).
  • Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol.16(9), 867–870 (1998).
  • Mir LM, Bureau MF, Gehl J et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl Acad. Sci. USA96(8), 4262–4267 (1999).
  • Satkauskas S, Bureau MF, Puc M et al. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol. Ther.5(2), 133–140 (2002).
  • Satkauskas S, Andre F, Bureau MF, Scherman D, Miklavcic D, Mir LM. Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer. Hum. Gene Ther.16(10), 1194–1201 (2005).
  • Cemazar M, Golzio M, Sersa G, Rols MP, Teissie J. Electrically-assisted nucleic acids delivery to tissues in vivo: where do we stand? Curr. Pharm. Des.12(29), 3817–3825 (2006).
  • Kanduser M, Miklavcic D, Pavlin M. Mechanisms involved in gene electrotransfer using high- and low-voltage pulses – an in vitro study. Bioelectrochemistry74(2), 265–271 (2009).
  • Neumann E, Schaeferridder M, Wang Y, Hofschneider PH. Gene-transfer into mouse lyoma cells by electroporation in high electric-fields. EMBO J.1(7), 841–845 (1982).
  • Pavselj N, Preat V. DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. J. Control Release106(3), 407–415 (2005).
  • Heller LC, Heller R. In vivo electroporation for gene therapy. Hum. Gene Ther.17(9), 890–897 (2006).
  • Prud’homme GJ, Glinka Y, Khan AS, Draghia-Akli R. Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr. Gene Ther.6(2), 243–273 (2006).
  • Daud AI, DeConti RC, Andrews S et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol.26(36), 5896–5903 (2008).
  • Al-Sakere B, Bernat C, Andre F et al. A study of the immunological response to tumor ablation with irreversible electroporation. Technol. Cancer Res. Treat.6(4), 301–305 (2007).
  • Al-Sakere B, Andre F, Bernat C et al. Tumor ablation with irreversible electroporation. PLoS ONE2(11), e1135 (2007).
  • Miller L, Leor J, Rubinsky B. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat.4(6), 699–705 (2005).
  • Puc M, Rebersek S, Miklavcic D. Requirements for a clinical electrochemotherapy device – electroporator. Radiol. Oncol.31, 816–827 (1997).
  • Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M. Electrochemotherapy in treatment of tumours. Eur. J. Surg. Oncol.34(2), 232–240 (2008).
  • Miklavcic D, Pucihar G, Pavlovec M et al. The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry65(2), 121–128 (2005).
  • Snoj M, Cemazar M, Kolar BS, Sersa G. Effective treatment of multiple unresectable skin melanoma metastases by electrochemotherapy. Croat. Med. J.48(3), 391–395 (2007).
  • Miklavcic D, Semrov D, Mekid H, Mir LM. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta Gen. Subj.1523(1), 73–83 (2000).
  • Corovic S, Pavlin M, Miklavcic D. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed. Eng. Online6, 37 (2007).
  • Corovic S, Zupanic A, Miklavcic D. Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy using needle electrodes. IEEE Trans. Plasma Sci.36(4), 1665–1672 (2008).
  • Miklavcic D, Corovic S, Pucihar G, Pavselj N. Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. EJC Suppl.4(11), 45–51 (2006).
  • Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir LM, Miklavcic D. Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng.52(5), 816–827 (2005).
  • Zupanic A, Corovic S, Miklavcic D. Optimization of electrode position and electric pulse amplitude in electrochemotherapy. Radiol. Oncol.42(2), 93–101 (2008).
  • Sersa G, Cemazar M, Miklavcic D. Antitumor effectiveness of electrochemotherapy with cis-diamminedichloroplatinum(II) in mice. Cancer Res.55(15), 3450–3455 (1995).
  • Domenge C, Orlowski S, Luboinski B et al. Antitumor electrochemotherapy – new advances in the clinical protocol. Cancer77(5), 956–963 (1996).
  • Heller R, Jaroszeski M, Perrott R, Messina J, Gilbert R. Effective treatment of B16 melanoma by direct delivery of bleomycin using electrochemotherapy. Melanoma Res.7(1), 10–18 (1997).
  • Cemazar M, Milacic R, Miklavcic D, Dolzan V, Sersa G. Intratumoral cisplatin administration in electrochemotherapy: antitumor effectiveness, sequence dependence and platinum content. Anticancer Drugs9(6), 525–530 (1998).
  • Jaroszeski MJ, Dang V, Pottinger C, Hickey J, Gilbert R, Heller R. Toxicity of anticancer agents mediated by electroporation in vitro. Anticancer Drugs11(3), 201–208 (2000).
  • Cemazar M, Parkins CS, Holder AL, Chaplin DJ, Tozer GM, Sersa G. Electroporation of human microvascular endothelial cells: evidence for an anti-vascular mechanism of electrochemotherapy. Br. J. Cancer84(4), 565–570 (2001).
  • Mir LM, Orlowski S. Mechanisms of electrochemotherapy. Adv. Drug Delivery Rev.35(1), 107–118 (1999).
  • Belehradek J, Orlowski S, Ramirez LH, Pron G, Poddevin B, Mir LM. Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochim. Biophys. Acta Biomembr.1190(1), 155–163 (1994).
  • Cemazar M, Miklavcic D, Scancar J, Dolzan V, Golouh R, Sersa G. Increased platinum accumulation in SA-1 tumour cells after in vivo electrochemotherapy with cisplatin. Br. J. Cancer79(9–10), 1386–1391 (1999).
  • Mir LM, Orlowski S, Poddevin B, Belehradek J. Electrochemotherapy tumor treatment is improved by interleukin-2 stimulation of the host’s defenses. Eur. Cytokine Netw.3(3), 331–334 (1992).
  • Sersa G, Cemazar M, Menart V, GabercPorekar V, Miklavcic D. Anti-tumor effectiveness of electrochemotherapy with bleomycin is increased by TNF-α on SA-1 tumors in mice. Cancer Lett.116(1), 85–92 (1997).
  • Sersa G, Miklavcic D, Cemazar M, Belehradek J, Jarm T, Mir LM. Electrochemotherapy with CDDP on LPB sarcoma: comparison of the anti-tumor effectiveness in immunocompetent and immunodeficient mice. Bioelectrochem. Bioenerg.43, 279–283 (1997).
  • Sersa G, Jarm T, Kotnik T et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br. J. Cancer98(2), 388–398 (2008).
  • Sersa G, Cemazar M, Miklavcic D, Chaplin DJ. Tumor blood flow modifying effect of electrochemotherapy with bleomycin. Anticancer Res.19(5B), 4017–4022 (1999).
  • Mir LM, Roth C, Orlowski S et al. Systemic antitumor effects of electrochemotherapy combined with histoincompatible cells secreting interleukin-2. J. Immunother.17(1), 30–38 (1995).
  • Heller L, Pottinger C, Jaroszeski M-L, Gilbert R, Heller R. In vivo electroporation of plasmids encoding GM-CFS or interleukin-2 into exisiting B16 melanomas combined with electrochemotherapy induces long-term antitumour immunity. Melanoma Res.10, 577–583 (2000).
  • Sersa G, Beravs K, Cemazar M, Miklavcic D, Demsar F. Contrast enhanced MRI assessment of tumor blood volume after application of electric pulses. Electro. Magnetobiol.17, 299–306 (1998).
  • Ramirez LH, Orlowski S, An D et al. Electrochemotherapy on liver tumours in rabbits. Br. J. Cancer77(12), 2104–2111 (1998).
  • Sersa G, Cemazar M, Parkins CS, Chaplin DJ. Tumour blood flow changes induced by application of electric pulses. Eur. J. Cancer35(4), 672–677 (1999).
  • Gehl J, Skovsgaard T, Mir LM. Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochim. Biophys. Acta Gen. Subj.1569(1–3), 51–58 (2002).
  • Dujardin N, Staes E, Kalia Y, Clarys P, Guy R, Preat V. In vivo assessment of skin electroporation using square wave pulses. J. Control. Release79(1–3), 219–227 (2002).
  • Jain RK. Transport of molecules across tumor vasculature. Cancer Metastasis Rev.6(4), 559–593 (1987).
  • Vaupel P, Hockel M. Blood supply, oxygenation status and metabolic micromilieu of breast cancers: characterization and therapeutic relevance. Int. J. Oncol.17(5), 869–879 (2000).
  • Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat. Rev. Cancer5(6), 423–435 (2005).
  • Folkman J. Opinion – angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov.6(4), 273–286 (2007).
  • Chaplin DJ, Hill SA, Bell KM, Tozer GM. Modification of tumor blood flow: current status and future directions. Semin. Radiat. Oncol.8(3), 151–163 (1998).
  • Siemann DW, Horsman MR. Vascular targeted therapies in oncology. Cell Tissue Res.335(1), 241–248 (2009).
  • Sersa G, Krzic M, Sentjurc M et al. Reduced blood flow and oxygenation in SA-1 tumours after electrochemotherapy with cisplatin. Br. J. Cancer87(9), 1047–1054 (2002).
  • Sersa G, Cemazar M, Miklavcic D. Tumor blood flow modifying effects of electrochemotherapy: a potential vascular targeted mechanism. Radiol. Oncol.37(1), 43–48 (2003).
  • Ivanusa T, Beravs K, Cemazar M, Jevtic V, Demsar F, Sersa G. MRI macromolecular contrast agents as indicators of changed tumor blood flow. Radiol. Oncol.35(2), 139–147 (2001).
  • Jarm T, Cemazar M, Sersa G. Tumor blood flow-modifying effects of electroporation and electrochemotherapy – experimental evidence and implications for the therapy. In: Advanced Electroporation Techniques in Biology and Medicine. Pakhomov, AG, Miklavcic D, Markov MS (Eds). CRC Press, USA 401–424 (2010).
  • Pavselj N, Bregar Z, Cukjati D, Batiuskaite D, Mir LM, Miklavcic D. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans. Biomed. Eng.52(8), 1373–1381 (2005).
  • Kanthou C, Kranjc S, Sersa G, Tozer G, Zupanic A, Cemazar M. The endothelial cytoskeleton as a target of electroporation-based therapies. Mol. Cancer Ther.5(12), 3145–3152 (2006).
  • Usaj M, Trontelj K, Hudej R, Kanduser M, Miklavcic D. Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization. Radiol. Oncol.43(2), 108–119 (2009).
  • Valic B, Golzio M, Pavlin M et al. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur. Biophys. J. Biophys. Lett.32(6), 519–528 (2003).
  • Sentjurc M, Cemazar M, Sersa G. EPR oximetry of tumors in vivo in cancer therapy. Spectrochim. Acta A Mol. Biomol. Spectrosc.60, 1379–1385 (2004).
  • Jarm T, Cemazar M, Steinberg F, Streffer C, Sersa G, Miklavcic D. Perturbation of blood how as a mechanism of anti-tumour action of direct current electrotherapy. Physiol. Meas.24(1), 75–90 (2003).
  • Jarm T, Sersa G, Miklavcic D. Oxygenation and blood flow in tumors treated with hydralazine: evaluation with a novel luminescence-based optic sensor. Technol. Health Care10, 363–380 (2002).
  • Cör A, Cemazar M, Plazar N, Sersa G. Comparison between hypoxic markers pimonidazole and glucose transporter 1 (Glut-1) in murine fibrosarcoma tumours after electrochemotherapy. Radiol. Oncol.43(3), 195–202 (2009).
  • Cemazar M, Parkins CS, Holder AL, Kranjc S, Chaplin DJ, Sersa G. Cytotoxicity of bioreductive drug tirapazamine is increased by application of electric pulses in SA-1 tumours in mice. Anticancer Res.21(2A), 1151–1156 (2001).
  • Larkin JO, Collins CG, Aarons S et al. Electrochemotherapy – aspects of preclinical development and early clinical experience. Ann. Surg.245(3), 469–479 (2007).
  • Campana LG, Mocellin S, Basso M et al. Bleomycin-based electrochemotherapy: clinical outcome from a single institution’s experience with 52 patients. Ann. Surg. Oncol.16(1), 191–199 (2009).
  • Byrne CM, Thompson JF. Role of electrochemotherapy in the treatment of metastatic melanoma and other metastatic and primary skin tumors. Expert Rev. Anticancer Ther.6(5), 671–678 (2006).
  • Kubota Y, Mir LM, Nakada T, Sasagawa I, Suzuki H, Aoyama N. Successful treatment of metastatic skin lesions with electrochemotherapy. J. Urol.160(4), 1426–1426 (1998).
  • Gehl J, Geertsen PF. Efficient palliation of haemorrhaging malignant melanoma skin metastases by electrochemotherapy. Melanoma Res.10(6), 585–589 (2000).
  • Gehl J, Geertsen PF. Palliation of haemorrhaging and ulcerated cutaneous tumours using electrochemotherapy. EJC Suppl.4(11), 35–37 (2006).
  • Snoj M, Cemazar M, Srnovrsnik T, Kosir SP, Sersa G. Limb sparing treatment of bleeding melanoma recurrence by electrochemotherapy. Tumori95(3), 398–402 (2009).
  • Fletcher WS, Pommier RF, Lum S, Wilmarth TJ. Surgical treatment of metastatic melanoma. Am. J. Surg.175(5), 413–417 (1998).
  • Fraker DL, Alexander HR, Andrich M, Rosenberg SA. Palliation of regional symptoms of advanced extremity melanoma by isolated limb perfusion with melphalan and high-dose tumor necrosis factor. Cancer J. Sci. Am.1, 104–105 (1995).
  • Noorda EM, Vrouenraets BC, Nieweg OE, van Geel A, Eggermont AM, Kroon BB. Repeat isolated limb perfusion with TNF a and melphalan for recurrent limb melanoma after failure of previous perfusion. Eur. J. Surg. Oncol.32(3), 318–324 (2006).
  • Grunhagen DJ, de Wilt JH, Graveland WJ, van Geel AN, Eggermont AM. The palliative value of tumor necrosis factor α-based isolated limb perfusion in patients with metastatic sarcoma and melanoma. Cancer106(1), 156–162 (2006).
  • Sasso CM, Hubner C, Wall S. Intraarterial embolization of bleeding melanoma. J. Vasc. Nurs.13(1), 27–28 (1995).
  • Lavee J, Onik G, Mikus P, Rubinsky B. A novel nonthermal energy source for surgical epicardial atrial ablation: irreversible electroporation. Heart Surg. Forum10(2), E162–E167 (2007).
  • Rubinsky J, Onik G, Mikus P, Rubinsky B. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J. Urol.180(6), 2668–2674 (2008).
  • Nuccitelli R, Chen X, Pakhomov AG et al. A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int. J. Cancer125(2), 438–445 (2009).
  • Cemazar M, Golzio M, Sersa G et al. Control by pulse parameters of DNA electrotransfer into solid tumors in mice. Gene Ther.16(5), 635–644 (2009).
  • Andre FM, Gehl J, Sersa G et al. Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum. Gene Ther.19(11), 1261–1271 (2008).
  • Trochon-Joseph V, Martel-Renoir D, Mir LM et al. Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res.64(6), 2062–2069 (2004).
  • Kranjc S, Cemazar M, Grosel A, Scancar J, Sersa G. Electroporation of LPB sarcoma cells in vitro and tumors in vivo increases the radiosensitizing effect of cisplatin. Anticancer Res.23(1A), 275–281 (2003).
  • Sersa G, Kranjc S, Cemazar M. Improvement of combined modality therapy with cisplatin and radiation using electroporation of tumors. Int. J. Radiat. Oncol. Biol. Phys.46(4), 1037–1041 (2000).
  • Kranjc S, Tevz G, Kamensek U, Vidic S, Cemazar M, Sersa G. Radiosensitizing effect of electrochemotherapy in a fractionated radiation regimen in radiosensitive murine sarcoma and radioresistant adenocarcinoma tumor model. Radiat. Res.172(6), 677–685 (2009).
  • Pendas S, Jaroszeski MJ, Gilbert R et al. Direct delivery of chemotherapeutic agents for the treatment of hepatomas and sarcomas in rat models. Radiol. Oncol.32, 53–64 (1998).
  • Metal Complexes in Cancer Chemotherapy. Keppler BK (Ed.). Weinheim, Germany Wiley-VCH (1993).
  • Sava G, Alessio E, Bergamo A, Mestroni G. Sulfoxide ruthenium complexes: non-toxic tools for the selective treatment of solid tumour metastases. In: Biological Inorganic Chemistry 1. Clarke MJ, Sadler PJ (Eds). Springer, Berlin, Germany (1999).
  • Bicek A, Turel I, Kanduser M, Miklavcic D. Combined therapy of the antimetastatic compound NAMI-A and electroporation on B16F1 tumour cells in vitro. Bioelectrochemistry71(2), 113–117 (2007).
  • Hudej R, Turel I, Kanduser M et al. The influence of electroporation on cytotoxicity of anticancer ruthenium(III) complex KP1339 in vitro and in vivo. Anticancer Res. (2010) (In press).
  • Bertacchini C, Margotti PM, Bergamini E, Lodi A, Ronchetti M, Cadossi R. Design of an irreversible electroporation system for clinical use. Technol. Cancer Res. Treat.6(4), 313–320 (2007).
  • Miklavcic D, Snoj M, Zupanic A et al. Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed. Eng. Online9, 10 (2010).
  • Schmiedl U, Ogan M, Paajanen H et al. Albumin labeled with GD-DTPA as an intravascular, blood pool enhancing agent for MR imaging – biodistribution and imaging studies. Radiology162(1), 205–210 (1987).
  • Demsar F, Roberts TPL, Schwickert HC et al. A MRI spatial mapping technique for microvascular permeability and tissue blood volume based on macromolecular contrast agent distribution. Magn. Reson. Med.37(2), 236–242 (1997).
  • Sapirstein LA. Regional blood flow by fractional distribution of indicators. Am. J. Physiol.193, 161–168 (1958).
  • Shepherd AP, Öberg PÅ. Laser-Doppler blood flowmetry.Kluwer Academic Publishers, MA, USA (1990).
  • Delorme S, Krix M. Contrast-enhanced ultrasound for examining tumor biology. Cancer Imaging6(1), 148–152 (2006).
  • Sersa G, Krzic M, Sentjurc M et al. Reduced tumor oxygenation by treatment with vinblastine. Cancer Res.61(10), 4266–4271 (2001).
  • O’Hara JA, Blumenthal RD, Grinberg OY et al. Response to radioimmunotherapy correlates with tumor pO2 measured by EPR oximetry in human tumor xenografts. Radiat. Res.155(3), 466–473 (2001).
  • Swartz HM, Clarkson RB. The measurement of oxygen in vivo using EPR techniques. Phys. Med. Biol.43(7), 1957–1975 (1998).
  • Collingridge DR, Young WK, Vojnovic B et al. Measurement of tumor oxygenation: A comparison between polarographic needle electrodes and a time-resolved luminescence-based optical sensor. Radiat. Res.147(3), 329–334 (1997).
  • Vaupel P, Schlenger K, Knoop C, Hockel M. Oxygenation of human tumors – evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res.51(12), 3316–3322 (1991).
  • Menon C, Fraker DL. Tumor oxygenation status as a prognostic marker. Cancer Lett.221(2), 225–235 (2005).
  • Raleigh JA, Chou SC, Bono EL, Thrall DE, Varia MA. Semiquantitative immunohistochemical analysis for hypoxia in human tumors. Int. J. Radiat. Oncol. Biol. Phys.49, 569–574 (2001).
  • Chen CH, Pore N, Behrooz A, Ismail-Beigi F, Maity A. Regulation of glut1 mRNA by hypoxia-inducible factor-1 – interaction between H-ras and hypoxia. J. Biol. Chem.276(12), 9519–9525 (2001).
  • Cooper R, Sarioglu S, Sokmen S et al. Glucose transporter-1 (GLUT-1): a potential marker of prognosis in rectal carcinoma? Br. J. Cancer89(5), 870–876 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.