282
Views
28
CrossRef citations to date
0
Altmetric
Review

Poly(ADP-ribosyl)ation polymerases: mechanism and new target of anticancer therapy

, , , , &
Pages 1125-1136 | Published online: 10 Jan 2014

References

  • Chambon P, Weill JD, Mandel P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun.11, 39–43 (1963).
  • Ame JC, Spenlehauer C, de Murcia G. The PARP superfamily. Bioessays26(8), 882–893 (2004).
  • Oliver AW, Ame JC, Roe SM, Good V, de Murcia G, Pearl LH. Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2. Nucleic Acids Res.32(2), 456–464 (2004).
  • Ame JC, Rolli V, Schreiber V et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Appl. Biol. Chem.274(25), 17860–17868 (1999).
  • Burkle A. Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J.272(18), 4576–4589 (2005).
  • de Murcia G, Schreiber V, Molinete M et al. Structure and function of poly(ADP-ribose) polymerase. Mol. Cell. Biochem.138(1–2), 15–24 (1994).
  • Gradwohl G, Menissier de Murcia JM, Molinete M et al. The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc. Natl Acad. Sci. USA87(8), 2990–2994 (1990).
  • Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell119(6), 803–814 (2004).
  • Hassa PO, Haenni SS, Elser M, Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev.70(3), 789–829 (2006).
  • Rongvaux A, Andris F, Van Gool F, Leo O. Reconstructing eukaryotic NAD metabolism. Bioessays25(7), 683–690 (2003).
  • Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur. J. Biochem.267(6), 1550–1564 (2000).
  • Skidmore CJ, Davies MI, Goodwin PM et al. The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by gamma-radiation and N-methyl-N-nitrosourea. Eur. J. Biochem.101(1), 135–142 (1979).
  • Kreimeyer A, Wielckens K, Adamietz P, Hilz H. DNA repair-associated ADP-ribosylation in vivo. Modification of histone H1 differs from that of the principal acceptor proteins. J. Appl. Biol. Chem.259(2), 890–896 (1984).
  • Alvarez-Gonzalez R, Althaus FR. Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat. Res.218(2), 67–74 (1989).
  • Keith G, Desgres J, de Murcia G. Use of two-dimensional thin-layer chromatography for the components study of poly(adenosine diphosphate ribose). Anal. Biochem.191(2), 309–313 (1990).
  • Ferro AM, Olivera BM. Poly(ADP-ribosylation) in vitro. Reaction parameters and enzyme mechanism. J. Appl. Biol. Chem.257(13), 7808–7813 (1982).
  • Mortusewicz O, Ame JC, Schreiber V, Leonhardt H. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res.35(22), 7665–7675 (2007).
  • Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell. Biol.18(6), 3563–3571 (1998).
  • Caldecott KW. XRCC1 and DNA strand break repair. DNA Repair (Amst.)2(9), 955–969 (2003).
  • Mackey ZB, Niedergang C, Murcia JM et al. DNA ligase III is recruited to DNA strand breaks by a zinc finger motif homologous to that of poly(ADP-ribose) polymerase. Identification of two functionally distinct DNA binding regions within DNA ligase III. J. Appl. Biol. Chem.274(31), 21679–21687 (1999).
  • Bryant HE, Petermann E, Schultz N et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J.28(17), 2601–2615 (2009).
  • Audebert M, Salles B, Calsou P. Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway. Biochem. Biophys. Res. Commun.369(3), 982–988 (2008).
  • Saberi A, Hochegger H, Szuts D et al. RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair. Mol. Cell. Biol.27(7), 2562–2571 (2007).
  • Wang M, Wu W, Wu W et al. PARP-1 and Ku compete for repair of DNA double-strand breaks by distinct NHEJ pathways. Nucleic Acids Res.34(21), 6170–6182 (2006).
  • Cohen-Armon M. PARP-1 activation in the ERK signaling pathway. Trends Pharmacol. Sci.28(11), 556–560 (2007).
  • Cohen-Armon M, Visochek L, Rozensal D et al. DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol. Cell25(2), 297–308 (2007).
  • Carbone M, Rossi MN, Cavaldesi M, Notari A, Amati P, Maione R. Poly(ADP-ribosyl)ation is implicated in the G0–G1 transition of resting cells. Oncogene27(47), 6083–6092 (2008).
  • Berger F, Ramirez-Hernandez MH, Ziegler M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci.29(3), 111–118 (2004).
  • Yu SW, Wang H, Poitras MF et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science297(5579), 259–263 (2002).
  • Tentori L, Portarena I, Graziani G. Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol. Res.45(2), 73–85 (2002).
  • Fisher AE, Hochegger H, Takeda S, Caldecott KW. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol. Cell. Biol.27(15), 5597–5605 (2007).
  • Buelow B, Uzunparmak B, Paddock M, Scharenberg AM. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation. PLoS ONE4(7), E6339 (2009).
  • Shall S. Proceedings: experimental manipulation of the specific activity of poly(ADP-ribose) polymerase. J. Biochem.77(1), p2 (1975).
  • Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem. J.185(3), 775–777 (1980).
  • Griffin RJ, Curtin NJ, Newell DR, Golding BT, Durkacz BW, Calvert AH. The role of inhibitors of poly(ADP-ribose) polymerase as resistance-modifying agents in cancer therapy. Biochimie77(6), 408–422 (1995).
  • Southan GJ, Szabo C. Poly(ADP-ribose) polymerase inhibitors. Curr. Med. Chem.10(4), 321–340 (2003).
  • Cepeda V, Fuertes MA, Castilla J et al. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy. Recent Pat. Anticancer Drug Discov.1(1), 39–53 (2006).
  • Ruf A, de Murcia G, Schulz GE. Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry37(11), 3893–3900 (1998).
  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem.73, 39–85 (2004).
  • Bryant HE, Schultz N, Thomas HD et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature434(7035), 913–917 (2005).
  • Huang SM, Mishina YM, Liu S et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature461(7264), 614–620 (2009).
  • Fearon ER. PARsing the phrase “all in for Axin”– Wnt pathway targets in cancer. Cancer Cell16(5), 366–368 (2009).
  • MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell17(1), 9–26 (2009).
  • D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J.342(Pt 2), 249–268 (1999).
  • Lindahl T, Satoh MS, Poirier GG, Klungland A. Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem. Sci.20(10), 405–411 (1995).
  • de Murcia JM, Niedergang C, Trucco C et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl Acad. Sci. USA94(14), 7303–7307 (1997).
  • Wang ZQ, Stingl L, Morrison C et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev.11(18), 2347–2358 (1997).
  • Saleh-Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, Helleday T. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol. Cell. Biol.25(16), 7158–7169 (2005).
  • Veuger SJ, Hunter JE, Durkacz BW. Ionizing radiation-induced NF-κB activation requires PARP-1 function to confer radioresistance. Oncogene28(6), 832–842 (2009).
  • Munoz-Gamez JA, Martin-Oliva D, Aguilar-Quesada R et al. PARP inhibition sensitizes p53-deficient breast cancer cells to doxorubicin-induced apoptosis. Biochem. J.386(Pt 1), 119–125 (2005).
  • Delaney CA, Wang LZ, Kyle S et al. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin. Cancer Res.6(7), 2860–2867 (2000).
  • Bowman KJ, White A, Golding BT, Griffin RJ, Curtin NJ. Potentiation of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors NU1025 and NU1064. Br. J. Cancer78(10), 1269–1277 (1998).
  • Bowman KJ, Newell DR, Calvert AH, Curtin NJ. Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro. Br. J. Cancer84(1), 106–112 (2001).
  • Farmer H, McCabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434(7035), 917–921 (2005).
  • Taylor J, Lymboura M, Pace PE et al. An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers. Int. J. Cancer79(4), 334–342 (1998).
  • Wooster R, Weber BL. Breast and ovarian cancer. N. Engl. J. Med.348(23), 2339–2347 (2003).
  • Ford D, Easton DF, Peto J. Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am. J. Hum. Genet.57(6), 1457–1462 (1995).
  • Easton DF, Narod SA, Ford D, Steel M. The genetic epidemiology of BRCA1. Breast Cancer Linkage Consortium. Lancet344(8924), 761 (1994).
  • Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98(19), 10869–10874 (2001).
  • Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature406(6797), 747–752 (2000).
  • Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene25(43), 5846–5853 (2006).
  • Nielsen TO, Hsu FD, Jensen K et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res.10(16), 5367–5374 (2004).
  • Foulkes WD, Stefansson IM, Chappuis PO et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst.95(19), 1482–1485 (2003).
  • Thompson ME, Jensen RA, Obermiller PS, Page DL, Holt JT. Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression. Nat. Genet.9(4), 444–450 (1995).
  • Turner NC, Reis-Filho JS, Russell AM et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene26(14), 2126–2132 (2007).
  • Marroni F, Aretini P, D’Andrea E et al. Penetrances of breast and ovarian cancer in a large series of families tested for BRCA1/2 mutations. Eur. J. Hum. Genet.12(11), 899–906 (2004).
  • Berchuck A, Heron KA, Carney ME et al. Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin. Cancer Res.4(10), 2433–2437 (1998).
  • Wang C, Horiuchi A, Imai T et al. Expression of BRCA1 protein in benign, borderline, and malignant epithelial ovarian neoplasms and its relationship to methylation and allelic loss of the BRCA1 gene. J. Pathol.202(2), 215–223 (2004).
  • Zheng W, Luo F, Lu JJ et al. Reduction of BRCA1 expression in sporadic ovarian cancer. Gynecol. Oncol.76(3), 294–300 (2000).
  • Wilson CA, Ramos L, Villasenor MR et al. Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas. Nat. Genet.21(2), 236–240 (1999).
  • Thrall M, Gallion HH, Kryscio R, Kapali M, Armstrong DK, DeLoia JA. BRCA1 expression in a large series of sporadic ovarian carcinomas: a Gynecologic Oncology Group study. Int. J. Gynecol. Cancer16(Suppl. 1), 166–171 (2006).
  • Risch HA, McLaughlin JR, Cole DE et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J. Natl Cancer Inst.98(23), 1694–1706 (2006).
  • Willers H, Taghian AG, Luo CM, Treszezamsky A, Sgroi DC, Powell SN. Utility of DNA repair protein foci for the detection of putative BRCA1 pathway defects in breast cancer biopsies. Mol. Cancer Res.7(8), 1304–1309 (2009).
  • Salmena L, Carracedo A, Pandolfi PP. Tenets of PTEN tumor suppression. Cell133(3), 403–414 (2008).
  • Mendes-Pereira AM, Martin SA, Brough R et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med.1(6–7), 315–322 (2009).
  • Knight ZA, Shokat KM. Chemically targeting the PI3K family. Biochem. Soc. Trans.35(Pt 2), 245–249 (2007).
  • Bryant HE, Helleday T. Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res.34(6), 1685–1691 (2006).
  • McCabe N, Turner NC, Lord CJ et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res.66(16), 8109–8115 (2006).
  • Stilgenbauer S, Schaffner C, Litterst A et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat. Med.3(10), 1155–1159 (1997).
  • Rosenwald A, Chuang EY, Davis RE et al. Fludarabine treatment of patients with chronic lymphocytic leukemia induces a p53-dependent gene expression response. Blood104(5), 1428–1434 (2004).
  • Stankovic T, Weber P, Stewart G et al. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet353(9146), 26–29 (1999).
  • Austen B, Powell JE, Alvi A et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood106(9), 3175–3182 (2005).
  • Bullrich F, Rasio D, Kitada S et al.ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Res.59(1), 24–27 (1999).
  • Edwards SL, Brough R, Lord CJ et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature451(7182), 1111–1115 (2008).
  • Sakai W, Swisher EM, Jacquemont C et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res.69(16), 6381–6386 (2009).
  • Liu X, Han EK, Anderson M et al. Acquired resistance to combination treatment with temozolomide and ABT-888 is mediated by both base excision repair and homologous recombination DNA repair pathways. Mol. Cancer Res.7(10), 1686–1692 (2009).
  • Yang SX, Kummar S, Steinberg SM et al. Immunohistochemical detection of poly(ADP-ribose) polymerase inhibition by ABT-888 in patients with refractory solid tumors and lymphomas. Cancer Biol. Ther.8(21), 2004–2009 (2009).
  • Kummar S, Kinders R, Gutierrez ME et al. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J. Clin. Oncol.27(16), 2705–2711 (2009).
  • Plummer R, Middleton M, Wilson R et al. First in human Phase I trial of the PARP inhibitor AG-014699 with temozolomide (TMZ) in patients (pts) with advanced solid tumors. J. Clin. Oncol.23(16 Suppl.) (2005) (Abstract 8013).
  • Plummer R, Jones C, Middleton M et al. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res.14(23), 7917–7923 (2008).
  • Fong PC, Spicer J, Reade S et al. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) evaluation of a small molecule inhibitor of Poly ADP-ribose polymerase (PARP), KU-0059436 (Ku) in patients (p) with advanced tumours. J. Clin. Oncol.4(Suppl. 18) (2006) (Abstract 5510).
  • Fong PC, Boss DS, Carden CP et al. AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: results from a Phase I study. J. Clin. Oncol.26(Suppl.) 5510 (2008).
  • Fong PC, Boss DS, Yap TA et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med.361(2), 123–134 (2009).
  • Kopetz S, Mita MM, Mok I et al. First in human Phase I study of BSI-201, a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in subjects with advanced solid tumors. J. Clin. Oncol.26(Suppl.) (2008) (Abstract 3579).
  • Mahany JJ, Lewis N, Heath EI et al. A Phase IB study evaluating BSI-201 in combination with chemotherapy in subjects with advanced solid tumors. J. Clin. Oncol.26(Suppl.) (2008) (Abstract 8013).
  • Plummer R, Lorigan P, Evans J et al. First and final report of a Phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM). J. Clin. Oncol.24(Suppl. 18) (2006) (Abstract CRA501).
  • Tutt A, Robson M, Garber JE et al. Phase II trial of the oral PARP inhibitor olaparib in BRCA-deficient advanced breast cancer. J. Clin. Oncol.27(Suppl. 18) (2009) (Abstract 3).
  • O’Shaughnessy J, Osborne C, Pippen J et al. Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomized Phase II trial. J. Clin. Oncol.27(Suppl. 18) (2009).

Websites

  • Merck. MK4827 in patients with advanced solid tumors. Identifier: NCT00749502 (2010) www.clinicaltrials.gov
  • Pfizer. A study of poly (ADP-ribose) polymerase inhibitor PF-01367338 In combination with several chemotherapeutic regimens. Identifier: NCT01009190 (2010) www.clinicaltrials.gov
  • Gore M. A study to assess the safety and pharmacokinetics of an inhibitor of PARP in combination with dacarbazine. Identifier: NCT00516802 (2010) www.clinicaltrials.gov
  • Cassidy J. Study to assess the safety and tolerability of a PARP inhibitor in combination with topotecan. Identifier: NCT00516438 (2010) www.clinicaltrials.gov
  • De Bono JS, Schellens JH. Study to assess the safety and tolerability of a PARP inhibitor in combination with carboplatin. Identifier: NCT00516724 (2010) www.clinicaltrials.gov
  • Bang Y-J. Efficacy study of olaparib with paclitaxel versus paclitaxel in gastric cancer patients. Identifier: NCT01063517 (2010) www.clinicaltrials.gov
  • Kaufmann B. Open label study to assess efficacy and safety of olaparib in confirmed genetic BRCA1 or BRCA2 mutation pats. Identifier: NCT01078662 (2010) www.clinicaltrials.gov
  • Chen EX. AZD2281 and irinotecan in treating patients with locally advanced or metastatic colorectal cancer. Identifier:NCT00535353 (2010) www.clinicaltrials.gov
  • Kohn EC. AZD2281 and carboplatin in treating patients with BRCA1/BRCA2-associated, hereditary, or triple negative metastatic or unresectable breast cancer or ovarian epithelial cancer. Identifier: NCT00647062 (2010) www.clinicaltrials.gov
  • Renggli V. AZD2281 in combination with liposomal doxorubicin in advanced solid tumours. Identifier: NCT00819221 (2010) www.clinicaltrials.gov
  • BiPar. A Phase III, multi-center study of gemcitabine/carboplatin, with or without BSI-201, in patients with ER-, PR-, and Her2-negative metastatic breast cancer. Identifier: NCT00938652 (2010) www.clinicaltrials.gov
  • BiPar. Phase I/Ib dose escalation study evaluating BSI-201 as a single agent and in combination with irinotecan in subjects with advanced solid tumors. Identifier: NCT00298675 (2010) www.clinicaltrials.gov
  • BiPar. Study of the poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor BSI-201 in patients with newly diagnosed malignant glioma. Identifier: NCT00687765 (2010) www.clinicaltrials.gov
  • Miller KD. PARP inhibition for triple negative breast cancer (ER-/PR-/HER2-)With BRCA1/2 mutations. Identifier: NCT01074970 (2010) www.clinicaltrials.gov

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.