661
Views
230
CrossRef citations to date
0
Altmetric
Review

Nonhistone protein acetylation as cancer therapy targets

, , , , &
Pages 935-954 | Published online: 10 Jan 2014

References

  • Jiang SW, Li J, Podratz K, Dowdy S. Application of DNA methylation biomarkers for endometrial cancer management. Expert Rev. Mol. Diagn.8(5), 607–616 (2008).
  • Buchwald M, Kramer OH, Heinzel T. HDACi – targets beyond chromatin. Cancer Lett.280(2), 160–167 (2009).
  • Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int. J. Biochem. Cell Biol.41(1), 185–198 (2009).
  • Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell31(4), 449–461 (2008).
  • Krämer OH, Baus D, Knauer SK et al. Acetylation of Stat1 modulates NF-κB activity. Genes Dev.20(4), 473–485 (2006).
  • Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene26(37), 5541–5552 (2007).
  • Botrugno OA, Santoro F, Minucci S. Histone deacetylase inhibitors as a new weapon in the arsenal of differentiation therapies of cancer. Cancer Lett.280(2), 134–144 (2009).
  • Bilton R, Trottier E, Pouyssegur J, Brahimi-Horn MC. ARDent about acetylation and deacetylation in hypoxia signalling. Trends Cell Biol.16(12), 616–621 (2006).
  • Sakuma T, Uzawa K, Onda T et al. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int. J. Oncol.29(1), 117–124 (2006).
  • Polevoda B, Sherman F. Na -terminal acetylation of eukaryotic proteins. J. Biol. Chem.275(47), 36479–36482 (2000).
  • Bergel M, Herrera JE, Thatcher BJ et al. Acetylation of novel sites in the nucleosomal binding domain of chromosomal protein HMG-14 by p300 alters its interaction with nucleosomes. J. Biol. Chem.275, 11514–11520 (2000).
  • Herrera J, Sakaguchi K, Bergel M, Trieschmann L, Nakatani Y, Bustin M. Specific acetylation of chromosomal protein HMG-17 by P/CAF alters its interaction with nucleosomes. Mol. Cell Biol.19, 3466–3473 (1999).
  • Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA51, 786–794 (1964).
  • Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene363, 15–23 (2005).
  • Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov.5(1), 37–50 (2006).
  • Hahn CK, Ross KN, Warrington IM et al. Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc. Natl Acad. Sci. USA105(28), 9751–9756 (2008).
  • Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol.338(1), 17–31 (2004).
  • Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol. Endocrinol.21(8), 1745–1755 (2007).
  • Yang XJ, Gregoire S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell Biol.25(8), 2873–2884 (2005).
  • Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev.14(2), 121–141 (2000).
  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J.370(3), 737–749 (2003).
  • Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene26(9), 1351–1356 (2007).
  • Bandyopadhyay D, Mishra A, Medrano EE. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res.64(21), 7706–7710 (2004).
  • Johnson CA, White DA, Lavender JS, O’Neill LP, Turner BM. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J. Biol. Chem.277(11), 9590–9597 (2002).
  • Tran AD, Marmo TP, Salam AA et al. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J. Cell Sci.120(8), 1469–1479 (2007).
  • Lagger G, O’Carroll D, Rembold M et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J.21(11), 2672–2681 (2002).
  • Vega RB, K Matsuda J, Oh AC et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell119(4), 555–566 (2004).
  • Arnold MA, Kim Y, Czubryt MP et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell12(3), 377–389 (2007).
  • Scroggins BT, Robzyk K, Wang D et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell25(1), 151–159 (2007).
  • Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN. Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell126(2), 321–334 (2006).
  • Dequiedt F et al. HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity18(5), 687–698 (2003).
  • Zhang Q, Vo, N, Goodman RH. Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc. Natl Acad. Sci. USA97(26), 14323–14328 (2000).
  • Shimazu T, Komatsu Y, Nakayama KI, Fukazawa H, Horinouchi S, Yoshida M. Regulation of SV40 large T-antigen stability by reversible acetylation. Oncogene25(56), 7391–7400 (2006).
  • Sengupta N, Seto E. Regulation of histone deacetylase activities. J. Cell Biochem.93(1), 57–67 (2004).
  • Schuettengruber B, Simboeck E, Khier H, Seiser C. Autoregulation of mouse histone deacetylase 1 expression. Mol. Cell Biol.23(19), 6993–7004 (2003).
  • Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14–13-3-dependent cellular localization. Proc. Natl Acad. Sci. USA97(14), 7835–7840 (2000).
  • Zhao X, Ito A, Kane CD et al. The modular nature of histone deacetylase HDAC4 confers phosphorylation-dependent intracellular trafficking. J. Biol. Chem.276(37), 35042–35048 (2001).
  • Parra M, Mahmoudi T, Verdinn E. Myosin phosphatase dephosphorylates HDAC7, controls its nucleocytoplasmic shuttling, and inhibits apoptosis in thymocytes. Genes Dev.21(6), 638–643 (2007).
  • Sadoul K, Boyault C, Pabion M, Khochbin S. Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie90(2), 306–312 (2008).
  • Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer4(10), 793–805 (2004).
  • Martínez-Balbás MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T. Regulation of E2F1 activity by acetylation. EMBO J.19(4), 662–671 (2000).
  • Chen X, Bieker JJ. Stage-specific repression by the EKLF transcriptional activator. Mol. Cell Biol.24(23), 10416–10424 (2004).
  • Chen LF, Greene WC. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol.5(5), 392–401 (2004).
  • Kumar BRP, Swaminathan V, Banerjee S, Kundu TK. p300-mediated acetylation of human transcriptional coactivator PC4 is inhibited by phosphorylation. J. Biol. Chem.276(20), 16804–16809 (2001).
  • Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A. Acetylation of FoxO1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl Acad. Sci. USA102(32), 11278–11283 (2005).
  • Zhao Y, Lu S, Wu L et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol. Cell Biol.26(7), 2782–2790 (2006).
  • Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell133(4), 612–626 (2008).
  • Murphy M, Ahn J, Walker KK et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev.13(19), 2490–2501 (1999).
  • Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature408(6810), 377–381(2000).
  • Ito A, Kawaguchi Y, Lai CH et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J.21(22), 6236–6245 (2002).
  • Luo J, Nikolaev AY, Imai S et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell107, 137–148 (2001).
  • Vaquero A, Scher Lee MD, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell16(1), 93–105 (2004).
  • Jin YH, Kim YJ, Kim DW, Baek KH, Kang BY, Yeo CY. SirT2 interacts with 14–13-3 b/g and down-regulates the activity of p53. Biochem. Biophys. Res. Commun.368(3), 690–695 (2008).
  • Barlev NA, Liu L, Chehab NH et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell8(6), 1243–1254 (2001).
  • Warnock LJ, Raines SA, Mee TR, Milner J. Role of phosphorylation in p53 acetylation and PAb421 epitope recognition in baculoviral and mammalian expressed proteins. FEBS J.272(7), 1669–1675 (2005).
  • Banerjee S, Kumar BR, Kundu TK. General transcriptional coactivator PC4 activates p53 function. Mol. Cell Biol.24(5), 2052–2062 (2004).
  • Batta K, Das C, Gadad S, Shandilya J, Kundu TK. Reversible acetylation of non histone proteins: role in cellular function and disease. Subcell. Biochem.4, 193–212 (2007).
  • Han Y, Jin YH, Kim YJ et al. Acetylation of SirT2 by p300 attenuates its deacetylase activity. Biochem. Biophys. Res. Commun.375(4), 576–580 (2008).
  • Schulze E, Asai DJ, Bulinski JC, Kirschner M. Posttranslational modification and microtubule stability. J. Cell Biol.105(5), 2167–2177 (1987).
  • Hubbert C, Guardiola A, Shao R et al. HDAC6 is a microtubule-associated deacetylase. Nature417, 455–458 (2002).
  • Matsuyama A, Shimazu T, Sumida Y et al.In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J.21, 6820–6831 (2002).
  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SirT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell11(2), 437–444 (2003).
  • Boyault C, Zhang Y, Fritah S et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev.21(17), 2172–2181 (2007).
  • Marrocco DL, Tilley WD, Bianco-Miotto T et al. Suberoylanilide hydroxamic acid (vorinostat) represses androgen receptor expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol. Cancer Ther.6(1), 51–60 (2007).
  • Marrocco DL, Tilley WD, Bianco-Miotto T et al. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol. Cancer Ther.5(11), 2767–2776 (2006).
  • Lee YS, Lim KH, Guo X et al. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res.68(18), 7561–7569 (2008).
  • Serrador JM, Cabrero JR, Sancho D, Mittelbrunn M, Urzainqui A, Sanchez-Madrid F. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity20(4), 417–428 (2004).
  • Das C, Kundu TK. Transcriptional regulation by the acetylation of nonhistone proteins in humans – a new target for therapeutics. IUBMB Life57(3), 137–149 (2005).
  • Fu M, Rao M, Wu K et al. The androgen receptor acetylation site regulates cAMP and AKT but not ERK-induced activity. J. Biol. Chem.279(28), 29436–29449 (2004).
  • Tronche F, Kellendonk C, Reichardt HM, Schutz G. Genetic dissection of glucocorticoid receptor function in mice. Curr. Opin. Genet. Dev.8(5), 532–538 (1998).
  • Lin HY, Hopkins R, Cao HJ et al. Acetylation of nuclear hormone receptor superfamily members: thyroid hormone causes acetylation of its own receptor by a mitogen-activated protein kinase-dependent mechanism. Steroids70(5–7), 444–449 (2005).
  • Gobinet J, Carascossa S, Cavailles V, Vignon F, Nicolas JC, Jalaguier S. SHP represses transcriptional activity via recruitment of histone deacetylases. Biochemistry44(16), 6312–6320 (2005).
  • Klampfer L, Huang J, Swaby LA, Augenlicht L. Requirement of histone deacetylase activity for signaling by STAT1. J. Biol. Chem.279(29), 30358–30368 (2004).
  • Chang HM, Paulson M, Holko M et al. Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc. Natl Acad. Sci. USA101(26), 9578–9583 (2004).
  • Shankaranarayanan P, Chaitidis P, Kühn H et al. Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J. Biol. Chem.276 (46), 42753–42760 (2001).
  • Yuan ZL, Guan YJ, Chatterjee D, Chin YE. STAT3 dimerization regulated by reversible acetylation of a single lysine residue. Science307(5707), 269–273 (2005).
  • Hayakawa F, Towatari M, Ozawa Y, Tomita A, Privalsky ML, Saito H. Functional regulation of GATA-2 by acetylation. J. Leukoc. Biol.75(3), 529–540 (2004).
  • Osawa M, Takayanagi S, Kato Y et al. Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood98(7), 2116–2123 (2001).
  • Thomas JO, Travers AA. HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem. Sci.26(3), 167–174 (2001).
  • Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. USA54, 35–100 (1996).
  • Pasheva E, Sarov M, Bidjekov K et al.In vitro acetylation of HMGB-1 and -2 proteins by CBP: the role of the acidic tail. Biochemistry43(10), 2935–2940 (2004).
  • Sterner R, Vidali G, Allfrey VG. Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in HMG-1. J. Biol. Chem.254(22), 11577–11583 (1979).
  • Bonaldi T, Fabio, Scaffidi P et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J.22(20), 5551–5560 (2003).
  • Munshi N, Agalioti T, Lomvardas S, Merika M, Chen G, Thanos D. Coordination of a transcriptional switch by HMGI(Y) acetylation. Science293(5532), 1133–1136 (2001).
  • Munshi N, Merika M, Yie J, Senger K, Chen G, Thanos D. Acetylation of HMG I(Y) by CBP turns off IFN b expression by disrupting the enhanceosome. Mol. Cell2(4), 457–467 (1998).
  • Luhrs H, Hock R, Schauber J et al. Modulation of HMG-N2 binding to chromatin by butyrate-induced acetylation in human colon adenocarcinoma cells. Int. J. Cancer97(5), 567–573 (2002).
  • Thevenet L, Mejean C, Moniot B et al. Regulation of human SRY subcellular distribution by its acetylation/deacetylation. EMBO J.23(16), 3336–3345 (2004).
  • Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S, Dean DC. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature375(6534), 812–815 (1995).
  • Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB. Acetylation control of the retinoblastoma tumour-suppressor protein. Nat. Cell Biol.3(7), 667–674 (2001).
  • Polesskaya A, Duquet A, Naguibneva I et al. CREB-binding protein/p300 activates MyoD by acetylation. J. Biol. Chem.275(44), 34359–34364 (2000).
  • Sartorelli V, Puri PL, Hamamori Y et al. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell4(5), 725–734 (1999).
  • Calnan DR, Brunet A. The FoxO code. Oncogene27(16), 2276–2288 (2008).
  • van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM. FoxO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J. Biol. Chem.279(28), 28873–28879 (2004).
  • Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J.21(23), 6539–6548 (2002).
  • Yeung F, Hoberg JE, Ramsey CS et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J.23(12), 2369–2380 (2004).
  • Kiernan R, Bres V, Ng RW et al. Post-activation turn-off of NF-κB-dependent transcription is regulated by acetylation of p65. J. Biol. Chem.278(4), 2758–2766 (2003).
  • Buerki C, Rothgiesser KM, Valovka T et al. Functional relevance of novel p300-mediated lysine 314 and 315 acetylation of RelA/p65. Nucleic Acids Res.36(5), 1665–1680 (2008).
  • Deng WG, Zhu Y, Wu KK. Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-a-induced cyclooxygenase-2 promoter activation. J. Biol. Chem.278(7), 4770–4777 (2003).
  • Berkhout B, Klaver B, Das AT. Forced evolution of a regulatory RNA helix in the HIV-1 genome. Nucleic Acids Res.25(5), 940–947 (1997).
  • Ott M, Schnolzer M, Garnica J et al. Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr. Biol.9(24), 1489–1492 (1999).
  • Kiernan RE, Vanhulle C, Schiltz L et al. HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J.18(21), 6106–6118 (1999).
  • Deng Q, Li Y, Tedesco D et al. The ability of E1A to rescue ras-induced premature senescence and confer transformation relies on inactivation of both p300/CBP and Rb family proteins. Cancer Res.65(18), 8298–8307 (2005).
  • Molloy D, Mapp KL, Webster R, Gallimore PH, Grand RJ. Acetylation at a lysine residue adjacent to the CtBP binding motif within adenovirus 12 E1A causes structural disruption and limited reduction of CtBP binding. Virology355(2), 115–126 (2006).
  • Madison DL, Yaciuk P, Kwok RP, Lundblad JR. Acetylation of the adenovirus-transforming protein E1A determines nuclear localization by disrupting association with importin-a. J. Biol. Chem.277(41), 38755–38763 (2002).
  • Ikenoue T, Inoki K, Zhao B, Guan KL. PTEN acetylation modulates its interaction with PDZ domain. Cancer Res.68(17), 6908–6912 (2008).
  • Yao XH, Nyomba BL. Hepatic insulin resistance induced by prenatal alcohol exposure is associated with reduced PTEN and TRB3 acetylation in adult rat offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol.294(6), R1797–R1806 (2008).
  • Corda D, Colanzi A, Luini A. The multiple activities of CtBP/BARS proteins: the Golgi view. Trends Cell Biol.16(3), 167–173 (2006).
  • Jacob AL, Lund J, Martinez P, Hedin L. Acetylation of steroidogenic factor 1 protein regulates its transcriptional activity and recruits the coactivator GCN5. J. Biol. Chem.276(40), 37659–37664 (2001).
  • Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene236(2), 197–208 (1999).
  • Yang WM, Yao YL, Sun JM, Davie JR, Seto E. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J. Biol. Chem.272(44), 28001–28007 (1997).
  • Galasinski SC, Resing KA, Goodrich JA, Ahn NG. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J. Biol. Chem.277(22), 19618–19626 (2002).
  • Yao YL, Yang, WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol. Cell Biol.21(17), 5979–5991 (2001).
  • Zhang W, Kadam S, Emerson BM, Bieker JJ. Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI–SNF complex. Mol. Cell Biol.21(7), 2413–2422 (2001).
  • Chen X, Bieker JJ. Unanticipated repression function linked to erythroid Kruppel-like factor. Mol. Cell Biol.21(9), 3118–3125 (2001).
  • Rössig L, Li H, Fisslthaler B et al. Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ. Res.91(9), 837–844 (2002).
  • Januchowski R, Dabrowski M, Ofori H, Jagodzinski PP. Trichostatin A down-regulate DNA methyltransferase 1 in Jurkat T cells. Cancer Lett.246(1–2), 313–317 (2007).
  • Xiong Y, Dowdy SC, Podratz KC et al. Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells. Cancer Res.65(7), 2684–2689 (2005).
  • De los Santos M, Martinez-Iglesias O, Aranda A. Anti-estrogenic actions of histone deacetylase inhibitors in MCF-7 breast cancer cells. Endocr. Relat. Cancer14(4), 1021–1028 (2007).
  • Arányi T, Sarkis C, Berrard S et al. Sodium butyrate modifies the stabilizing complexes of tyrosine hydroxylase mRNA. Biochem. Biophys. Res. Commun.359(1), 15–19 (2007).
  • Rausa FM III, Hughes DE, Costa RH. Stability of the hepatocyte nuclear factor 6 transcription factor requires acetylation by the CREB-binding protein coactivator. J. Biol. Chem.279(41), 43070–43076 (2004).
  • Juan LJ, Shia WJ, Chen MH et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J. Biol. Chem.275(27), 20436–20443 (2000).
  • Sheng W, Yan H, Rausa FM, Costa RH, Liao X. Structure of the hepatocyte nuclear factor 6a and its interaction with DNA. J. Biol. Chem.279(32), 33928–33936 (2004).
  • Jeong JW, Bae MK, Ahn MY et al. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell111(5), 709–720 (2002).
  • Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α. Mol. Cell Biol.26(6), 2019–2028 (2006).
  • Qian DZ, Kachhap SK, Collis SJ et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 a. Cancer Res.66(17), 8814–8821 (2006).
  • He W, Li AG, Wang D, Han S, Zheng B, Goumans M-J. Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO J.21(11), 2580–2590 (2002).
  • Grönroos E, Hellman U, Heldin CH, Ericsson J. Control of Smad7 stability by competition between acetylation and ubiquitination. Mol. Cell10(3), 483–493 (2002).
  • Simonsson M, Heldin CH, Ericsson J, Gronroos E. The balance between acetylation and deacetylation controls Smad7 stability. J. Biol. Chem.280(23), 21797–21803 (2005).
  • Tang X, Gao JS, Guan YJ et al. Acetylation-dependent signal transduction for type I interferon receptor. Cell131, 93–105 (2007).
  • Wade PA. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum. Mol. Genet.10(7), 693–698 (2001).
  • Gabrielli BG, Johnstone RW, Saunders NA. Identifying molecular targets mediating the anticancer activity of histone deacetylase inhibitors: a work in progress. Curr. Cancer Drug Targets2(4), 337–353 (2002).
  • Choi CH, Burton ZF, Usheva A. Auto-acetylation of transcription factors as a control mechanism in gene expression. Cell Cycle3(2), 114–115 (2004).
  • Halkidou K, Gnanapragasam VJ, Meht PB et al. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate59(2), 177–189 (2004).
  • Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int. J. Cancer112(1), 26–32 (2004).
  • Saunders LR, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene26(37), 5489–5504 (2007).
  • Knights CD, Catania J, Di Giovanni S et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J. Cell Biol.173(4), 533–544 (2006).
  • Huang BH, Laban M, Leung CH et al. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ.12(4), 395–404 (2005).
  • Olaharski AJ, Rine J, Marshall BL et al. The flavoring agent dihydrocoumarin reverses epigenetic silencing and inhibits sirtuin deacetylases. PLoS Genet.1(6), E77 (2005).
  • Costanzo A, Merlo P, Pediconi N et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell9(1), 175–186 (2002).
  • Cohen HY, Lavu S, Bitterman KJ et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol. Cell13(5), 627–638 (2004).
  • Faiola F, Liu X, Lo S et al. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol. Cell Biol.25(23), 10220–10234 (2005).
  • McMahon C, Suthiphongchai T, DiRenzo J, Ewen ME. P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. Proc. Natl Acad. Sci. USA96(10), 5382–5387 (1999).
  • Rampalli S, Pavithra L, Bhatt A, Kundu TK, Chattopadhyay S. Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Mol. Cell Biol.25(19), 8415–8429 (2005).
  • Ocker M, Schneider-Stock R. Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Int. J. Biochem. Cell Biol.39(7–8), 1367–1374 (2007).
  • Ju R, Muller MT. Histone deacetylase inhibitors activate p21(WAF1) expression via ATM. Cancer Res.63(11), 2891–2897 (2003).
  • Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res.32(3), 959–976 (2004).
  • Hirsch CL, Bonham K. Histone deacetylase inhibitors regulate p21WAF1 gene expression at the post-transcriptional level in HepG2 cells. FEBS Lett.570(1–3), 37–40 (2004).
  • Zhang HS, Gavin M, Dahiya A et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell101(1), 79–89 (2000).
  • Riggs MG, Whittaker RG, Neumann JR, Ingram VM. N-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature268(5619), 462–464 (1977).
  • Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem.265(28), 17174–17179 (1990).
  • Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J.20(24), 6969–6978 (2001).
  • Ma X, Ezzeldin HH, Diasio RB. Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs69(14), 1911–1934 (2009).
  • Steele NL, Plumb JA, Vidal L et al. A Phase I pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin. Cancer Res.14(3), 804–810 (2008).
  • Undevia SD, Kindler HL, Janisch L et al. A Phase I study of the oral combination of CI-994, a putative histone deacetylase inhibitor, and capecitabine. Ann. Oncol.15(11), 1705–1711 (2004).
  • Acharya MR, Sparreboom A, Venitz J, Figg WD. Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol. Pharmacol.68(4), 917–932 (2005).
  • Schneider-Stock R, Ocker M. Epigenetic therapy in cancer: molecular background and clinical development of histone deacetylase and DNA methyltransferase inhibitors. IDrugs10(8), 557–561 (2007).
  • Kramer OH, Göttlicher, M, Heinzel T. Histone deacetylase as a therapeutic target. Trends Endocrinol. Metab.12(7), 294–300 (2001).
  • Marks PA, Xu WS. Histone deacetylase inhibitors: potential in cancer therapy. J. Cellular Biochem.107(4), 600–608 (2009).
  • Ungerstedt JS, Sowa Y, Xu WS et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA102, 673–678 (2005).
  • Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res.63(13), 637–645 (2003).
  • Finnin MS, Donigian JR, Cohen A et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature401(6749), 188–193 (1999).
  • Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer6(1), 38–51 (2006).
  • Choudhary C, Kumar C, Gnad F et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science325(5942), 834–840 (2009).
  • Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol.25(1), 84–90 (2007).
  • Piekarz RL, Frye R, Turner M et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol.27(32), 5410–7 (2009).
  • Qian DZ, Wang X, Kachhap SK et al. The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res.64(18), 6626–6634 (2004).
  • Deroanne CF, Bonjean K, Servotte S et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene21(3), 427–436 (2002).
  • Michaelis M, Michaelis UR, Fleming I et al. Valproic acid inhibits angiogenesis in vitro and in vivo. Mol. Pharmacol.65(3), 520–527 (2004).
  • Wang LG, Liu XM, Fang Y et al. De-repression of the p21 promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc. Int. J. Oncol.33(2), 375–380 (2008).
  • Le Tourneau C, Siu LL. Promising antitumor activity with MGCD0103, a novel isotype-selective histone deacetylase inhibitor. Expert Opin. Investig. Drugs17(8), 1247–1254 (2008).
  • Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl Acad. Sci. USA100(8), 4389–4394 (2003).
  • Oehme I, Deubzer HE, Wegener D et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer Res.15(1), 91–99 (2009).
  • Karagiannis TC, El-Osta A. Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia21(1), 61–65 (2007).
  • Suzuki T. Explorative study on isoform-selective histone deacetylase inhibitors. Chem. Pharm. Bull. (Tokyo)57(9), 897–906 (2009).
  • Sargeant AM, Rengel RC, Kulp SK et al. OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res.68(10), 3999–4009 (2008).
  • Ramondetta L, Burke TW, Levenback C et al. Treatment of uterine papillary serous carcinoma with paclitaxel. Gynecol. Oncol.82(1), 156–161 (2001).
  • Chen C-S, Wang Y-C, Yang H-C et al. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res.67(11), 5318–5327 (2007).
  • Myzak MC, Dashwood RH. Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett.233(2), 208–218 (2006).
  • Druesne N, Pagniez A, Mayeur C et al. Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis25(7), 1227–1236 (2004).
  • Guyonnet D, Bergès R, Siess MH et al. Post-initiation modulating effects of allyl sulfides in rat hepatocarcinogenesis. Food Chem. Toxicol.42(9), 1479–1485 (2004).
  • Lu Q, Lin X, Feng J et al. Phenylhexyl isothiocyanate has dual function as histone deacetylase inhibitor and hypomethylating agent and can inhibit myeloma cell growth by targeting critical pathways. J. Hematol. Oncol.1, 6 (2008).
  • Myzak MC, Karplus PA, Chung F-L, Dashwood RH. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res.64(16), 5767–5774 (2004).
  • Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53C-terminal domain. Cell90, 595–606 (1997).
  • Ma H, Nguyen C, Lee KS, Kahn M. Differential roles for the coactivators CBP and p300 on TCF/β-catenin-mediated survivin gene expression. Oncogene24(22), 3619–3631 (2005).
  • Gay F, Calvo D, Lo MC et al. Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP-1. Genes Dev.17(6), 717–722 (2003).
  • Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M. E2F family members are differentially regulated by reversible acetylation. J. Biol. Chem.275(15), 10887–10892 (2000).
  • Kovacs JJ, Cohen TJ, Yao TP. Chaperoning steroid hormone signaling via reversible acetylation. Nucl. Recept. Signal.3, E004 (2005).
  • Kawai H, Yamada Y, Tatsuka M, Niwa O, Yamamoto K, Suzuki F. Down-regulation of nuclear factor κB is required for p53-dependent apoptosis in x-ray-irradiated mouse lymphoma cells and thymocytes. Cancer Res.59, 6038–6041 (1999).
  • Markham D, Munro S, Soloway J, O’Connor DP, La Thangue NB. DNA-damage- responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep.7(2), 192–198 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.