61
Views
14
CrossRef citations to date
0
Altmetric
Theme: Skin Cancer - Key Paper Evaluation

Identification of BRAF mutations in eruptive melanocytic nevi: new insights into melanomagenesis?

&
Pages 711-714 | Published online: 10 Jan 2014

References

  • Sekulic A, Colgan MB, Davis MD, Dicaudo DJ, Pittelkow MR. Activating BRAF mutations in eruptive melanocytic naevi. Br. J. Dermatol.163(5), 1095–1098 (2010).
  • Landi MT, Bauer J, Pfeiffer RM et al. MC1R germline variants confer risk for BRAF-mutant melanoma. Science313(5786), 521–522 (2006).
  • Arumi-Uria M, Mcnutt NS, Finnerty B. Grading of atypia in nevi: correlation with melanoma risk. Mod. Pathol.16(8), 764–771 (2003).
  • Mackie RM, English J, Aitchison TC, Fitzsimons CP, Wilson P. The number and distribution of benign pigmented moles (melanocytic naevi) in a healthy British population. Br. J. Dermatol.113(2), 167–174 (1985).
  • Newton-Bishop JA, Chang YM, Iles MM et al. Melanocytic nevi, nevus genes, and melanoma risk in a large case–control study in the United Kingdom. Cancer Epidemiol. Biomarkers Prev.19(8), 2043–2054 (2010).
  • Alaibac M, Piaserico S, Rossi CR et al. Eruptive melanocytic nevi in patients with renal allografts: report of 10 cases with dermoscopic findings. J. Am. Acad. Dermatol.49(6), 1020–1022 (2003).
  • Gelfer A, Rivers JK. Long-term follow-up of a patient with eruptive melanocytic nevi after Stevens–Johnson syndrome. Arch. Dermatol.143(12), 1555–1557 (2007).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature417(6892), 949–954 (2002).
  • Smalley KS. Understanding melanoma signaling networks as the basis for molecular targeted therapy. J. Invest. Dermatol.130(1), 28–37 (2010).
  • Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature445(7130), 851–857 (2007).
  • Pollock PM, Harper UL, Hansen Ks et al. High frequency of BRAF mutations in nevi. Nat. Genet.33(1), 19–20 (2003).
  • Michaloglou C, Vredeveld LC, Soengas MS et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature436(7051), 720–724 (2005).
  • Gray-Schopfer VC, Cheong SC, Chong H et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16?. Br. J. Cancer95(4), 496–505 (2006).
  • Maldonado JL, Timmerman L, Fridlyand J, Bastian BC. Mechanisms of cell-cycle arrest in Spitz nevi with constitutive activation of the MAP-kinase pathway. Am. J. Pathol.164(5), 1783–1787 (2004).
  • Mooi WJ, Peeper DS. Oncogene-induced cell senescence: halting on the road to cancer. N. Engl. J. Med.355(10), 1037–1046 (2006).
  • Maldonado JL, Fridlyand J, Patel H et al. Determinants of BRAF mutations in primary melanomas. J. Natl Cancer Inst.95(24), 1878–1890 (2003).
  • Edwards RH, Ward MR, Wu H et al. Absence of BRAF mutations in UV-protected mucosal melanomas. J. Med. Genet.41(4), 270–272 (2004).
  • Cui R, Widlund HR, Feige E et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell128(5), 853–864 (2007).
  • Rees JL. Genetics of hair and skin color. Annu. Rev. Genet.37, 67–90 (2003).
  • Hodi FS, O’Day SJ, Mcdermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363(8), 711–723 (2010).
  • Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM. Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist16(1), 5–24 (2011).
  • Zaidi MR, Davis S, Noonan FP et al. Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature469(7331), 548–553 (2011).
  • Leboeuf R, Baumgartner JE, Benezra M et al. BRAFV600E mutation is associated with preferential sensitivity to mitogen-activated protein kinase kinase inhibition in thyroid cancer cell lines. J. Clin. Endocrinol. Metab.93(6), 2194–2201 (2008).
  • Franco AT, Malaguarnera R, Refetoff S et al. Thyrotrophin receptor signaling dependence of BRAF-induced thyroid tumor initiation in mice. Proc. Natl Acad. Sci. USA108(4), 1615–1620 (2011).
  • Singer G, Oldt R 3rd, Cohen Y et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J. Natl Cancer Inst.95(6), 484–486 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.