250
Views
22
CrossRef citations to date
0
Altmetric
Review

The clinical and therapeutic implications of cancer stem cell biology

, , , , , & show all
Pages 1133-1145 | Published online: 10 Jan 2014

References

  • Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367, 645–648 (1994).
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3, 730–737 (1997).
  • Sutherland HJ, Blair A, Zapf RW. Characterization of a hierarchy in human acute myeloid leukemia progenitor cells. Blood87, 4754–4761 (1996).
  • Cox CV, Diamanti P, Evely RS et al. Expression of CD133 on leukemia-initiating cells in childhood ALL. Blood113, 3287–3296 (2009).
  • Blair A, Hogge DE, Ailles LE et al. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo.Blood89, 3104–3112 (1997).
  • Jordan CT, Upchurch D, Szilvassy SJ et al. The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia14, 1777–1784 (2000).
  • Holyoake T, Jiang X, Eaves C et al. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood94, 2056–2064 (1999).
  • George AA, Franklin J, Kerkof K et al. Detection of leukemic cells in the CD34(+)CD38(-) bone marrow progenitor population in children with acute lymphoblastic leukemia. Blood97, 3925–3930 (2001).
  • Matsui W, Huff CA, Wang Q et al. Characterization of clonogenic multiple myeloma cells. Blood103, 2332–2336 (2004).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A et al. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003).
  • Stingl J, Eirew P, Ricketson I et al. Purification and unique properties of mammary epithelial stem cells. Nature439, 993–997 (2006).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821–5828 (2003).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004).
  • Higashi K, Ueda Y, Seki H et al. Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J. Nucl. Med.39, 1016–1020 (1998).
  • Collins AT, Berry PA, Hyde C et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.65, 10946–10951 (2005).
  • Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA100, 15178–15183 (2003).
  • O’Brien CA, Pollett A, Gallinger S et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007).
  • Fang D, Nguyen TK, Leishear K et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res.65, 9328–9337 (2005).
  • Collins AT, Maitland NJ. Prostate cancer stem cells. Eur. J. Cancer42, 1213–1218 (2006).
  • Alvero AB, Chen R, Fu HH et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle8, 158–166 (2009).
  • Takaishi S, Okumura T, Tu S et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells27, 1006–1020 (2009).
  • Jordan CT, Guzman ML, Noble M. Cancer stem cells. N. Engl. J. Med.355, 1253–1261 (2006).
  • Pan CX, Zhu W, Cheng L. Implications of cancer stem cells in the treatment of cancer. Future Oncol.2, 723–731 (2006).
  • Haraguchi N, Utsunomiya T, Inoue H et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells24, 506–513 (2006).
  • Szotek PP, Pieretti-Vanmarcke R, Masiakos PT et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc. Natl Acad. Sci. USA103, 11154–11159 (2006).
  • Dean M. Cancer stem cells: redefining the paradigm of cancer treatment strategies. Mol. Interv.6, 140–148 (2006).
  • Cozzio A, Passegue E, Ayton PM et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev.17, 3029–3035 (2003).
  • Bachoo RM, Maher EA, Ligon KL et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell1, 269–277 (2002).
  • Cheng L, Zhang D. Molecular Genetic Pathology. Humana Press/Springer, NJ, USA (2008).
  • Reya T, Morrison SJ, Clarke MF et al. Stem cells, cancer and cancer stem cells. Nature404, 105–111 (2001).
  • Quintana E, Shackleton M, Sabel MS et al. Efficient tumour formation by single human melanoma cells. Nature456, 593–598 (2008).
  • Park SY, Lee HE, Li H et al. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin. Cancer Res.16, 876–887 (2010).
  • Taussig DC, Vargaftig J, Miraki-Moud F et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood115, 1976–1984 (2010).
  • Jordan CT, Guzman ML. Mechanisms controlling pathogenesis and survival of leukemic stem cells. Oncogene23, 7178–7187 (2004).
  • Visvader JE. Cells of origin in cancer. Nature469, 314–322 (2011).
  • Uchida N, Buck DW, He D et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA97, 14720–14725 (2000).
  • Collins AT, Habib FK, Maitland NJ et al. Identification and isolation of human prostate epithelial stem cells based on α(2)β(1)-integrin expression. J. Cell Sci.114, 3865–3872 (2001).
  • Blair A, Sutherland HJ. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp. Hematol.28, 660–671 (2000).
  • Molofsky AV, He S, Bydon M et al. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev.19, 1432–1437 (2005).
  • Di Cristofano, APandolfi PP. The multiple roles of PTEN in tumor suppression. Cell100, 387–390 (2000).
  • Yilmaz OH, Valdez R, Theisen BK et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature441, 475–482 (2006).
  • Hill R, Wu H. PTEN, stem cells, and cancer stem cells. J. Biol. Chem.284, 11755–11759 (2009).
  • Shipitsin M, Campbell LL, Argani P et al. Molecular definition of breast tumor heterogeneity. Cancer Cell11, 259–273 (2007).
  • Chen L, Shen R, Ye Y et al. Precancerous stem cells have the potential for both benign and malignant differentiation. PLoS One2, e293 (2007).
  • Gao JX. Cancer stem cells: the lessons from pre-cancerous stem cells. J. Cell. Mol. Med.12, 67–96 (2008).
  • Houghton J, Stoicov C, Nomura S et al. Gastric cancer originating from bone marrow-derived cells. Science306, 1568–1571 (2004).
  • Shen R, Ye Y, Chen L et al. Precancerous stem cells can serve as tumor vasculogenic progenitors. PLoS One3, e1652 (2008).
  • Rangwala F, Omenetti A, Diehl AM. Cancer stem cells: repair gone awry? J. Oncol.2011, 465343 (2011).
  • Mishra L, Banker T, Murray J et al. Liver stem cells and hepatocellular carcinoma. Hepatology49, 318–329 (2009).
  • Bernards R, Weinberg RA. A progression puzzle. Nature418, 823 (2002).
  • Balic M, Lin H, Young L et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res.12, 5615–5621 (2006).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A et al. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003).
  • Wicha MS. Cancer stem cells and metastasis: lethal seeds. Clin. Cancer Res.12, 5606–5607 (2006).
  • Ponti D, Costa A, Zaffaroni N et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.65, 5506–5511 (2005).
  • Schabath H, Runz S, Joumaa S et al. CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J. Cell Sci.119, 314–325 (2006).
  • Jones TD, Eble JN, Wang M et al. Molecular genetic evidence for the independent origin of multifocal papillary tumors in patients with papillary renal cell carcinomas. Clin. Cancer Res.11, 7226–7233 (2005).
  • Jones TD, Carr MD, Eble JN et al. Clonal origin of lymph node metastases in bladder carcinoma. Cancer104, 1901–1910 (2005).
  • Kernek KM, Ulbright TM, Zhang S et al. Identical allelic losses in mature teratoma and other histologic components of malignant mixed germ cell tumors of the testis. Am. J. Pathol.163, 2477–2484 (2003).
  • Karhadkar SS, Bova GS, Abdallah N et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature431, 707–712 (2004).
  • Pang R, Law WL, Chu AC et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell6, 603–615 (2010).
  • Lang JE, Hall CS, Singh B et al. Significance of micrometastasis in bone marrow and blood of operable breast cancer patients: research tool or clinical application? Expert Rev. Anticancer Ther.7, 1463–1472 (2007).
  • Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med.12, 895–904 (2006).
  • Li F, Tiede B, Massague J et al. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res.17, 3–14 (2007).
  • Griffiths EA, Pritchard SA, Welch IM et al. Is the hypoxia-inducible factor pathway important in gastric cancer? Eur. J. Cancer41, 2792–2805 (2005).
  • Muller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis. Nature410, 50–56 (2001).
  • Kaplan RN, Psaila B, Lyden D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol. Med.13, 72–81 (2007).
  • Abbott BL. ABCG2 (BCRP): a cytoprotectant in normal and malignant stem cells. Clin. Adv. Hematol. Oncol.4, 63–72 (2006).
  • Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood99, 507–512 (2002).
  • Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat. Rev. Cancer5, 275–284 (2005).
  • Belpomme D, Gauthier S, Pujade-Lauraine E et al. Verapamil increases the survival of patients with anthracycline-resistant metastatic breast carcinoma. Ann. Oncol.11, 1471–1476 (2000).
  • List AF, Kopecky KJ, Willman CL et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood98, 3212–3220 (2001).
  • Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol.26, 2839–2845 (2008).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444, 756–760 (2006).
  • Hadjihannas MV, Bruckner M, Jerchow B et al. Aberrant Wnt/β-catenin signaling can induce chromosomal instability in colon cancer. Proc. Natl Acad. Sci. USA103, 10747–10752 (2006).
  • Ho MM, Ng AV, Lam S et al. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res.67, 4827–4833 (2007).
  • Chapuy B, Koch R, Radunski U et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia (2008).
  • Rich JN. Cancer stem cells in radiation resistance. Cancer Res.67, 8980–8984 (2007).
  • Tang C, Ang BT, Pervaiz S. Cancer stem cell: target for anti-cancer therapy. FASEB J.21, 3777–3785 (2007).
  • Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J. Clin. Oncol.26, 2862–2870 (2008).
  • Nakshatri H. Radiation resistance in breast cancer: are CD44+/CD24-/proteosome low/PKH26+ cells to blame? Breast Cancer Res.12, 105 (2011).
  • Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol.26, 2839–2845 (2008).
  • Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell11, 69–82 (2007).
  • Blagosklonny MV. Why therapeutic response may not prolong the life of a cancer patient: selection for oncogenic resistance. Cell Cycle4, 1693–1698 (2005).
  • Zeppernick F, Ahmadi R, Campos B et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin. Cancer Res.14, 123–129 (2008).
  • Chu S, Holtz M, Gupta M et al. BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood103, 3167–3174 (2004).
  • Graham SM, Jorgensen HG, Allan E et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro.Blood99, 319–325 (2002).
  • Holtz MS, Slovak ML, Zhang F et al. Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood99, 3792–3800 (2002).
  • Copland M, Hamilton A, Elrick LJ et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood107, 4532–4539 (2006).
  • Ihara A, Wada K, Yoneda M et al. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J. Pharmacol. Sci.103, 24–32 (2007).
  • Konig J, Hartel M, Nies AT et al. Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. Int. J. Cancer115, 359–367 (2005).
  • Cole SP, Bhardwaj G, Gerlach JH et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science258, 1650–1654 (1992).
  • Doyle LA, Yang W, Abruzzo LV et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. USA95, 15665–15670 (1998).
  • Peters-Golden M, Henderson WR Jr. Leukotrienes. N. Engl. J. Med.357, 1841–1854 (2007).
  • Chen Y, Hu Y, Zhang H et al. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat. Genet.41, 783–792 (2009).
  • Huss WJ, Gray DR, Greenberg NM et al. Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res.65, 6640–6650 (2005).
  • Mahon FX, Belloc F, Lagarde V et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood101, 2368–2373 (2003).
  • Konopleva M, Zhao S, Hu W et al. The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br. J. Haematol.118, 521–534 (2002).
  • Mohrin M, Bourke E, Alexander D et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell7, 174–185 (2010).
  • Kvinlaug BT, Huntly BJ. Targeting cancer stem cells. Expert Opin. Ther. Targets11, 915–927 (2007).
  • Ailles LE, Weissman IL. Cancer stem cells in solid tumors. Curr. Opin. Biotechnol.18, 460–466 (2007).
  • Lichtman MA. Differentiation versus maturation of neoplastic hematopoietic cells: an important distinction. Blood Cells Mol. Dis.27, 649–652 (2001).
  • Bernstein ID. Monoclonal antibodies to the myeloid stem cells: therapeutic implications of CMA-676, a humanized anti-CD33 antibody calicheamicin conjugate. Leukemia14, 474–475 (2000).
  • Sievers EL, Larson RA, Stadtmauer EA et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol.19, 3244–3254 (2001).
  • Pagel JM, Appelbaum FR, Eary JF et al.131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood107, 2184–2191 (2006).
  • Hu Y, Swerdlow S, Duffy TM et al. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc. Natl Acad. Sci. USA103, 16870–16875 (2006).
  • McCubrey JA, Steelman LS, Abrams SL et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia22, 708–722 (2008).
  • Zhou H, Kim YS, Peletier A et al. Effects of the EGFR/HER2 kinase inhibitor GW572016 on EGFR- and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance. Int. J. Radiat. Oncol. Biol. Phys.58, 344–352 (2004).
  • Druker BJ, Tamura S, Buchdunger E et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med.2, 561–566 (1996).
  • Druker BJ, Sawyers CL, Kantarjian H et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med.344, 1038–1042 (2001).
  • Li X, Lewis MT, Huang J et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst.100, 672–679 (2008).
  • Kim PS, Lee PP, Levy D. Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput. Biol.4, e1000095 (2008).
  • Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immunol.5, 738–743 (2004).
  • Stingl J, Caldas C. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat. Rev. Cancer7, 791–799 (2007).
  • Schulenburg A, Ulrich-Pur H, Thurnher D et al. Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer107, 2512–2520 (2006).
  • Jin Y, Lu Z, Ding K et al. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-κB pathway and generation of reactive oxygen species. Cancer Res.70, 2516–2527 (2010).
  • Guzman ML, Jordan CT. Considerations for targeting malignant stem cells in leukemia. Cancer Control11, 97–104 (2004).
  • Gupta PB, Onder TT, Jiang G et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell138, 645–659 (2009).
  • Chen JK, Taipale J, Cooper MK et al. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev.16, 2743–2748 (2002).
  • Chen JK, Taipale J, Young KE et al. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA99, 14071–14076 (2002).
  • Schugar RC, Robbins PD, Deasy BM. Small molecules in stem cell self-renewal and differentiation. Gene Ther.15, 126–135 (2008).
  • Cairns J. Somatic stem cells and the kinetics of mutagenesis and carcinogenesis. Proc. Natl Acad. Sci. USA99, 10567–10570 (2002).
  • Park Y, Gerson SL. DNA repair defects in stem cell function and aging. Annu. Rev. Med.56, 495–508 (2005).
  • Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature414, 98–104 (2001).
  • Lin H. The stem-cell niche theory: lessons from flies. Nat. Rev. Genet.3, 931–940 (2002).
  • Rockey DC, Paulson E, Niedzwiecki D et al. Analysis of air contrast barium enema, computed tomographic colonography, and colonoscopy: prospective comparison. Lancet365, 305–311 (2005).
  • Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer Res.66, 4553–4557 (2006).
  • Sheu CC, Yu YP, Tsai JR et al. Development of a membrane array-based multimarker assay for detection of circulating cancer cells in patients with non-small cell lung cancer. Int. J. Cancer119, 1419–1426 (2006).
  • Riethdorf S, Muller V, Zhang L et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin. Cancer Res.16, 2634–2645 (2011).
  • Schuster R, Bechrakis NE, Stroux A et al. Circulating tumor cells as prognostic factor for distant metastases and survival in patients with primary uveal melanoma. Clin. Cancer Res.13, 1171–1178 (2007).
  • Hess KR, Varadhachary GR, Taylor SH et al. Metastatic patterns in adenocarcinoma. Cancer106, 1624–1633 (2006).
  • Karnoub AE, Dash AB, Vo AP et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature449, 557–563 (2007).
  • Sneddon JB, Werb Z. Location, location, location: the cancer stem cell niche. Cell Stem Cell1, 607–611 (2007).
  • Adams GB, Chabner KT, Alley IR et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature439, 599–603 (2006).
  • Borovski T, De Sousa EMF, Vermeulen L et al. Cancer stem cell niche: the place to be. Cancer Res.71, 634–639 (2011).
  • Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer7, 733–736 (2007).
  • Yang ZJ, Wechsler-Reya RJ. Hit ‘em where they live: targeting the cancer stem cell niche. Cancer Cell11, 3–5 (2007).
  • de Groot JF, Fuller G, Kumar AJ et al. Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro. Oncol.12, 233–242 (2010).
  • Liu H, Patel MR, Prescher JA et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc. Natl Acad. Sci. USA107, 18115–18120 (2011).
  • Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell116, 769–778 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.