151
Views
14
CrossRef citations to date
0
Altmetric
Theme: Leukemia/Lymphoma - Review

Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia

, &
Pages 381-392 | Published online: 10 Jan 2014

References

  • Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J. Natl Cancer Inst.25, 85–109 (1960).
  • Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature243(5405), 290–293 (1973).
  • Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the p210BCR/ABL gene of the Philadelphia chromosome. Science247(4944), 824–830 (1990).
  • Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood105(7), 2640–2653 (2005).
  • Quintas-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control16(2), 122–131 (2009).
  • O’Brien SG, Guilhot F, Larson RA et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med.348(11), 994–1004 (2003).
  • Hochhaus A, O’Brien SG, Guilhot F et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia23(6), 1054–1061 (2009).
  • Arora M, Weisdorf DJ, Spellman SR et al. HLA-identical sibling compared with 8/8 matched and mismatched unrelated donor bone marrow transplant for chronic phase chronic myeloid leukemia. J. Clin. Oncol.27(10), 1644–1652 (2009).
  • Gambacorti-Passerini C, Antolini L, Mahon FX et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J. Natl Cancer Inst.103(7), 553–561 (2011).
  • Baccarani M, Castagnetti F, Gugliotta G, Palandri F, Soverini S. Response definitions and European LeukemiaNet management recommendations. Best Pract. Res. Clin. Haematol.22(3), 331–341 (2009).
  • Kantarjian H, Cortes J. BCR–ABL tyrosine kinase inhibitors in chronic myeloid leukemia: using guidelines to make rational treatment choices. J. Natl Compr. Canc. Netw.6(Suppl. 2), S37–S42; quiz S43–S44 (2008).
  • Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J. Clin. Invest.120(7), 2254–2264 (2010).
  • Baccarani M, Saglio G, Goldman J et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood108(6), 1809–1820 (2006).
  • Alvarado Y, Kantarjian H, O’Brien S et al. Significance of suboptimal response to imatinib, as defined by the European LeukemiaNet, in the long-term outcome of patients with early chronic myeloid leukemia in chronic phase. Cancer115(16), 3709–3718 (2009).
  • Saglio G, Fava C. Practical monitoring of chronic myelogenous leukemia: when to change treatment. J. Natl Compr. Canc. Netw.10(1), 121–129 (2012).
  • Talpaz M, Silver RT, Druker BJ et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a Phase 2 study. Blood99(6), 1928–1937 (2002).
  • Stoklosa T, Poplawski T, Koptyra M et al. BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res.68(8), 2576–2580 (2008).
  • Gorre ME, Mohammed M, Ellwood K et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science293(5531), 876–880 (2001).
  • Cortes J, Deininger M. Chronic Myeloid Leukaemia. Informa Healthcare USA, Inc, NY, USA (2007).
  • Mahon FX, Deininger MW, Schultheis B et al. Selection and characterization of BCR–ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood96(3), 1070–1079 (2000).
  • Hochhaus A, Kreil S, Corbin AS et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia16(11), 2190–2196 (2002).
  • Tang C, Schafranek L, Watkins DB et al. Tyrosine kinase inhibitor resistance in chronic myeloid leukemia cell lines: investigating resistance pathways. Leuk. Lymphoma52(11), 2139–2147 (2011).
  • Abrahamsson AE, Geron I, Gotlib J et al. Glycogen synthase kinase 3 beta missplicing contributes to leukemia stem cell generation. Proc. Natl Acad. Sci. USA106(10), 3925–3929 (2009).
  • Jamieson CH, Ailles LE, Dylla SJ et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351(7), 657–667 (2004).
  • Gambacorti-Passerini C, Zucchetti M, Russo D et al. Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin. Cancer Res.9(2), 625–632 (2003).
  • Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol.4(2), 75–85 (2003).
  • Jorgensen HG, Elliott MA, Allan EK, Carr CE, Holyoake TL, Smith KD. Alpha1-acid glycoprotein expressed in the plasma of chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571. Blood99(2), 713–715 (2002).
  • Green H, Skoglund K, Rommel F, Mirghani RA, Lotfi K. CYP3A activity influences imatinib response in patients with chronic myeloid leukemia: a pilot study on in vivo CYP3A activity. Eur. J. Clin. Pharmacol.66(4), 383–386 (2010).
  • Mahon FX, Belloc F, Lagarde V et al.MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood101(6), 2368–2373 (2003).
  • Hatziieremia S, Jordanides NE, Holyoake TL, Mountford JC, Jorgensen HG. Inhibition of MDR1 does not sensitize primitive chronic myeloid leukemia CD34+ cells to imatinib. Exp. Hematol.37(6), 692–700 (2009).
  • White DL, Saunders VA, Dang P et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood110(12), 4064–4072 (2007).
  • Noens L, Van Lierde MA, De Bock R et al. Prevalence, determinants, and outcomes of nonadherence to imatinib therapy in patients with chronic myeloid leukemia: the ADAGIO study. Blood113(22), 5401–5411 (2009).
  • Marin D, Bazeos A, Mahon FX et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J. Clin. Oncol.28(14), 2381–2388 (2010).
  • Fioretos T, Strombeck B, Sandberg T et al. Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations. Blood94(1), 225–232 (1999).
  • Schutte J, Opalka B, Becher R et al. Analysis of the p53 gene in patients with isochromosome 17q and Ph1-positive or -negative myeloid leukemia. Leuk. Res.17(6), 533–539 (1993).
  • Helgason GV, Karvela M, Holyoake TL. Kill one bird with two stones: potential efficacy of BCR–ABL and autophagy inhibition in CML. Blood118(8), 2035–2043 (2011).
  • Warsch W, Kollmann K, Eckelhart E et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood117(12), 3409–3420 (2011).
  • Okabe S, Tauchi T, Tanaka Y, Ohyashiki K. Dasatinib preferentially induces apoptosis by inhibiting Lyn kinase in nilotinib-resistant chronic myeloid leukemia cell line. J. Hematol. Oncol.4(1), 32 (2011).
  • Donato NJ, Wu JY, Stapley J et al. BCR–ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood101(2), 690–698 (2003).
  • Nishioka C, Ikezoe T, Yang J, Yokoyama A. Long-term exposure of leukemia cells to multi-targeted tyrosine kinase inhibitor induces activations of AKT, ERK and STAT5 signaling via epigenetic silencing of the PTEN gene. Leukemia24(9), 1631–1640 (2010).
  • De Lavallade H, Finetti P, Carbuccia N et al. A gene expression signature of primary resistance to imatinib in chronic myeloid leukemia. Leuk. Res.34(2), 254–257 (2010).
  • Carette JE, Pruszak J, Varadarajan M et al. Generation of iPSCs from cultured human malignant cells. Blood115(20), 4039–4042 (2010).
  • Brusa G, Zuffa E, Mancini M et al. P210 BCR–ABL tyrosine kinase interaction with histone deacetylase 1 modifies histone H4 acetylation and chromatin structure of chronic myeloid leukaemia haematopoietic progenitors. Br. J. Haematol.132(3), 359–369 (2006).
  • Lee SM, Bae JH, Kim MJ et al. BCR–ABL-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J. Pharmacol. Exp. Ther.322(3), 1084–1092 (2007).
  • Zhang B, Strauss AC, Chu S et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell17(5), 427–442 (2010).
  • Elrick LJ, Jorgensen HG, Mountford JC, Holyoake TL. Punish the parent not the progeny. Blood105(5), 1862–1866 (2005).
  • Holtz MS, Forman SJ, Bhatia R. Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia19(6), 1034–1041 (2005).
  • Graham SM, Jorgensen HG, Allan E et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood99(1), 319–325 (2002).
  • Mahon FX, Rea D, Guilhot J et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol.11(11), 1029–1035 (2010).
  • Ross DM, Branford S, Seymour JF et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia24(10), 1719–1724 (2010).
  • Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR–ABL activity. J. Clin. Invest.121(1), 396–409 (2011).
  • Ito K, Bernardi R, Morotti A et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature453(7198), 1072–1078 (2008).
  • Naka K, Hoshii T, Muraguchi T et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature463(7281), 676–680 (2010).
  • Pellicano F, Holyoake TL. Assembling defenses against therapy-resistant leukemic stem cells: Bcl6 joins the ranks. J. Exp. Med.208(11), 2155–2158 (2011).
  • Zhao C, Chen A, Jamieson CH et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature458(7239), 776–779 (2009).
  • Scott MT, Mccaig AM, Holyoake TL. Hematology education – the education program for the annual congress of the European Hematology Association. EHA5(1), 112–119 (2011).
  • Kantarjian HM, Talpaz M, O’Brien S et al. Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood101(2), 473–475 (2003).
  • Jabbour E, Kantarjian HM, Jones D et al. Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy. Blood113(10), 2154–2160 (2009).
  • Lombardo LJ, Lee FY, Chen P et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem.47(27), 6658–6661 (2004).
  • Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science305(5682), 399–401 (2004).
  • Kantarjian H, Shah NP, Hochhaus A et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med.362(24), 2260–2270 (2010).
  • Cortes J, Kim DW, Raffoux E et al. Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia22(12), 2176–2183 (2008).
  • Apperley JF, Cortes JE, Kim DW et al. Dasatinib in the treatment of chronic myeloid leukemia in accelerated phase after imatinib failure: the START a trial. J. Clin. Oncol.27(21), 3472–3479 (2009).
  • Copland M, Hamilton A, Elrick LJ et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood107(11), 4532–4539 (2006).
  • O’Hare T, Walters DK, Deininger MW, Druker BJ. AMN107: tightening the grip of imatinib. Cancer Cell7(2), 117–119 (2005).
  • Weisberg E, Manley PW, Breitenstein W et al. Characterization of AMN107, a selective inhibitor of native and mutant BCR–ABL. Cancer Cell7(2), 129–141 (2005).
  • Jorgensen HG, Allan Ek, Jordanides NE, Mountford JC, Holyoake TL. Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood109(9), 4016–4019 (2007).
  • Kantarjian HM, Hochhaus A, Saglio G et al. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the Phase 3 randomised ENESTnd trial. Lancet Oncol.12(9), 841–851 (2011).
  • Wei G, Rafiyath S, Liu D. First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib. J. Hematol. Oncol.3, 47 (2010).
  • Soverini S, Hochhaus A, Nicolini FE et al. BCR–ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood118(5), 1208–1215 (2011).
  • O’Hare T, Shakespeare WC, Zhu X et al. AP24534, a pan-BCR–ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell16(5), 401–412 (2009).
  • Eiring AM, Khorashad JS, Morley K, Deininger MW. Advances in the treatment of chronic myeloid leukemia. BMC Med.9, 99 (2011).
  • Cortes JE, Kantarjian HM, Brummendorf TH et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood118(17), 4567–4576 (2011).
  • Kantarjian H, Le Coutre P, Cortes J et al. Phase I study of INNO-406, a dual Abl/Lyn kinase inhibitor, in Philadelphia chromosome-positive leukemias after imatinib resistance or intolerance. Cancer116(11), 2665–2672 (2010).
  • Kelly KR, Ecsedy J, Medina E et al. The novel Aurora A kinase inhibitor MLN8237 is active in resistant chronic myeloid leukaemia and significantly increases the efficacy of nilotinib. J. Cell Mol. Med.15(10), 2057–2070 (2011).
  • Bixby D, Talpaz M. Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance. Hematology Am. Soc. Hematol. Educ. Program461–476 (2009).
  • Shiotsu Y, Kiyoi H, Ishikawa Y et al. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood114(8), 1607–1617 (2009).
  • Zhang J, Adrian FJ, Jahnke W et al. Targeting BCR–ABL by combining allosteric with ATP-binding-site inhibitors. Nature463(7280), 501–506 (2010).
  • Grebien F, Hantschel O, Wojcik J et al. Targeting the SH2–kinase interface in BCR–ABL inhibits leukemogenesis. Cell147(2), 306–319 (2011).
  • Chan WW, Wise SC, Kaufman MD et al. Conformational control inhibition of the BCR–ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036. Cancer Cell19(4), 556–568 (2011).
  • Nicolini FE, Chomel JC, Roy L et al. The durable clearance of the T315I BCR–ABL mutated clone in chronic phase chronic myelogenous leukemia patients on omacetaxine allows tyrosine kinase inhibitor rechallenge. Clin. Lymphoma Myeloma Leuk.10(5), 394–399 (2010).
  • Allan EK, Holyoake TL, Craig AR, Jorgensen HG. Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells. Leukemia25(6), 985–994 (2011).
  • Mohi MG, Boulton C, Gu TL et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc. Natl Acad. Sci. USA101(9), 3130–3135 (2004).
  • Sillaber C, Mayerhofer M, Bohm A et al. Evaluation of antileukaemic effects of rapamycin in patients with imatinib-resistant chronic myeloid leukaemia. Eur. J. Clin. Invest.38(1), 43–52 (2008).
  • Mancini M, Petta S, Martinelli G, Barbieri E, Santucci MA. RAD 001 (everolimus) prevents mTOR and Akt late re-activation in response to imatinib in chronic myeloid leukemia. J. Cell. Biochem.109(2), 320–328 (2010).
  • Carayol N, Vakana E, Sassano A et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR–ABL-expressing leukemic cells. Proc. Natl Acad. Sci. USA107(28), 12469–12474 (2010).
  • Kharas MG, Janes MR, Scarfone VM et al. Ablation of PI3K blocks BCR–ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR–ABL+ leukemia cells. J. Clin. Invest.118(9), 3038–3050 (2008).
  • Bellodi C, Lidonnici MR, Hamilton A et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J. Clin. Invest.119(5), 1109–1123 (2009).
  • Preudhomme C, Guilhot J, Nicolini FE et al. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N. Engl. J. Med.363(26), 2511–2521 (2010).
  • Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat. Genet.41(7), 783–792 (2009).
  • Rojas JM, Knight K, Watmough S et al. BCR–ABL peptide vaccination in healthy subjects: immunological responses are equivalent to those in chronic myeloid leukaemia patients. Leuk. Res.35(3), 369–372 (2011).
  • Jain N, Reuben JM, Kantarjian H et al. Synthetic tumor-specific breakpoint peptide vaccine in patients with chronic myeloid leukemia and minimal residual disease: a Phase 2 trial. Cancer115(17), 3924–3934 (2009).
  • Bocchia M, Defina M, Aprile L et al. Complete molecular response in CML after p210 BCR–ABL1-derived peptide vaccination. Nat. Rev. Clin. Oncol.7(10), 600–603 (2010).
  • Smahel M. Antigens in chronic myeloid leukemia: implications for vaccine development. Cancer Immunol. Immunother.60(12), 1655–1668 (2011).
  • An WG, Schulte TW, Neckers LM. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210BCR–ABL and v-src proteins before their degradation by the proteasome. Cell Growth Differ.11(7), 355–360 (2000).
  • Wang Y, Trepel JB, Neckers LM, Giaccone G. STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer. Curr. Opin. Investig. Drugs11(12), 1466–1476 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.