93
Views
14
CrossRef citations to date
0
Altmetric
Review

Assessment of endothelial dysfunction

, &
Pages 557-571 | Published online: 10 Jan 2014

References

  • Augustin HG, Kozian DH, Johnson RC. Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays16, 901–906 (1994).
  • Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature288, 373–376 (1980).
  • Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ. Res.61, 866–879 (1987).
  • Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature327, 524–526 (1987).
  • Palmer RM, Rees DD, Ashton DS, Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem. Biophys. Res. Commun.153, 1251–1256 (1988).
  • Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet2, 1057–1058 (1987).
  • Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ. Evidence for the inhibitory role of guanosine 3´, 5´-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood57, 946–955 (1998).
  • Högman M, Frostell C, Arnberg H, Hedenstierna G. Inhalation of nitric oxide modulates methacholine-induced bronchoconstriction in the rabbit. Eur. Respir. J.6, 177–180 (1999).
  • Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J. Clin. Invest.97, 979–987 (1996).
  • Kawabata A. Evidence that endogenous nitric oxide modulates plasma fibrinogen levels in the rat. Br. J. Pharmacol.117, 236–237 (1996).
  • Lidbury PS, Korbut R, Vane JR. Sodium nitroprusside modulates the fibrinolytic system in the rabbit. Br. J. Pharmacol.101, 527–530 (1990).
  • Lefer AM, Lefer DJ. The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc. Res.32, 743–751 (1996).
  • Minamino T, Kitakaze M, Asanuma H et al. Endogenous adenosine inhibits P-selectin-dependent formation of coronary thromboemboli during hypoperfusion in dogs. J. Clin. Invest.101, 1643–1653 (1998).
  • Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J. Clin. Invest.83, 1774–1777 (1989).
  • Masaki T, Vane JR, Vanhoutte PM. International Union of Pharmacology nomenclature of endothelin receptors. Pharmacol. Rev.46, 137–142 (1994).
  • Spieker LE, Noll G, Ruschitzka FT, Lüscher TF. Endothelin receptor antagonists in congestive heart failure: a new therapeutic principle for the future? J. Am. Coll. Cardiol.37, 1493–1505 (2001).
  • Seo B, Oemar BS, Siebenmann R, von Segesser L, Lüscher TF. Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels. Circulation89, 1203–1208 (1994).
  • Verhaar MC, Strachan FE, Newby DE et al. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation97, 752–756 (1998).
  • Taylor SG, Weston AH. Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol. Sci.9, 272–274 (1988).
  • McGuire JJ, Ding H, Triggle CR. Endothelium-derived relaxing factors: a focus on endothelium-derived hyperpolarizing factor(s). Can. J. Physiol. Pharmacol.79, 443–470 (2001).
  • Blann AD, Naqvi T, Waite M, McCollum CN. von Willebrand factor and endothelial damage in essential Hypertension.J. Hum. Hypertens.7, 107–111 (1993).
  • Erdem Y, Usalan C, Haznedaroglu IC et al. Effects of angiotensin converting enzyme and angiotensin II receptor inhibition on impaired fibrinolysis in systemic Hypertension.Am. J. Hypertens.12, 1071–1076 (1999).
  • Blann AD, Tse W, Maxwell SJ, Waite MA. Increased levels of soluble adhesion molecule E-selectin in essential hypertension. J. Hypertens.12, 925–928 (1994).
  • Seligman BG, Biolo A, Polanczyk CA, Gross JL, Clausell N. Increased plasma lvelels of endothelin 1 and von Willebrand factor in patients with Type 2 diabetes and dyslipidaemia. Diabetes Care23, 1395–1400 (2000).
  • Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood93, 2951–2958 (1999).
  • Felder L, Vassalli G, Vassalli F et al. Clinical significance of coronary flow reserve: effect of papaverine and exercise. Coron. Artery Dis.5, 347–358 (1994).
  • Christensen CW, Rosen LB, Gal RA, Hasseb M, Lassar TA, Port SC. Coronary vasodilator reserve. Comparison of the effects of papaverine and adenosine on coronary flow, ventricular function and myocardial metabolism. Circulation83, 294–303 (1991).
  • Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med.323, 22–27 (1990).
  • Taddei S, Virdis A, Ghiadoni L et al. Restoration of nitric oxide availability after calcium antagonist treatment in essential hypertension. Hypertension37, 943–948 (2001).
  • Boneu B, Abbal M, Plante J, Bierme R. Letter: Factor-VIII complex and endothelial damage. Lancet1, 1430 (1975).
  • Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J. Clin. Invest.78, 1456–1461 (1986).
  • Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell46, 185–190 (1986).
  • Wagner DD. Cell biology of von Willebrand factor. Annu. Rev. Cell. Biol.6, 217–246 (1990).
  • Over J, Sixma JJ, Bruïne MH et al. Survival of 125iodine-labeled Factor VIII in normals and patients with classic hemophilia. Observations on the heterogeneity of human Factor VIII. J. Clin. Invest.62, 223–234 (1978).
  • Nachman RL, Jaffe EA. Subcellular platelet factor VIII antigen and von Willebrand factor. J. Exp. Med.141, 1101–1113 (1975).
  • Blann AD. von Willebrand factor antigen as an acute phase reactant and marker of endothelial cell injury in connective tissue diseases: a comparison with CRP, rheumatoid factor, and erythrocyte sedimentation rate. Z. Rheumatol.50, 320–322 (1991).
  • Koster T, Blann AD, Briët E, Vandenbroucke JP, Rosendaal FR. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet345, 152–155 (1995).
  • Jager A, van Hinsbergh VW, Kostense PJ et al. von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic and nondiabetic subjects: the Hoorn Study. Arterioscler. Thromb. Vasc. Biol.19, 3071–3078 (1999).
  • Haines AP, Howarth D, North WR et al. Haemostatic variables and the outcome of myocardial infarction. Thromb. Haemost.50, 800–803 (1983).
  • Blann AD, Maxwell SR, Burrows G, Miller JP. Antioxidants, von Willebrand factor and endothelial cell injury in hypercholesterolaemia and vascular disease. Atherosclerosis116, 191–198 (1995).
  • Freestone B, Chong AY, Nuttall S, Blann AD, Lip GY. Soluble E-selectin, von Willebrand factor, soluble thrombomodulin, and total body nitrate/nitrite product as indices of endothelial damage/dysfunction in paroxysmal, persistent, and permanent atrial fibrillation. Chest132, 1253–1258 (2007).
  • Liu L, Lin Z, Shen Z. Changes of von Willebrand factor and antithrombin III levels in acute stroke: difference between thrombotic and haemorrhagic stroke. Thromb. Res.72, 353–358 (1993).
  • Blann AD, McCollum CN. Adverse influence of cigarette smoking on the endothelium. Thromb. Haemost.70, 707–711 (1993).
  • Makris TK, Stavroulakis GA, Krespi PG et al. Fibrinolytic/hemostatic variables in arterial hypertension: response to treatment with irbesartan or atenolol. Am. J. Hypertens.13, 783–788 (2000).
  • Andreotti F, Hackett DR, Haider AW et al. von Willebrand factor, plasminogen activator inhibitor-1 and C-reactive protein are markers of thrombolytic efficacy in acute myocardial infarction. Thromb. Haemost.68, 678–682 (1992).
  • Vukovich TC, Schernthaner G, Knöbi PN, Hay U. The effect of near-normoglycemic control on plasma factor VIII/von Willebrand factor and fibrin degradation products in insulin-dependent diabetic patients. J. Clin. Endocrinol. Metab.69, 84–89 (1989).
  • Joukhadar C, Klein N, Prinz M et al. Similar effects of atorvastatin, simvastatin and pravastatin on thrombogenic and inflammatory parameters in patients with hypercholesterolemia. Thromb. Haemost.85, 47–51 (2001).
  • Jansson JH, Nilsson TK, Johnson O. von Willebrand factor in plasma: a novel risk factor for recurrent myocardial infarction and death. Br. Heart J.66, 351–355 (1991).
  • Meade TW, Cooper JA, Stirling Y, Howarth DJ, Ruddock V, Miller GJ. Factor VIII, ABO blood group and the incidence of ischaemic heart disease. Br. J. Haematol.88, 601–607 (1994).
  • Bickel C, Rupprecht HJ, Blankenberg S et al.; AtheroGene Investigators. Relation of markers of inflammation (C-reactive protein, fibrinogen, von Willebrand factor, and leukocyte count) and statin therapy to long-term mortality in patients with angiographically proven coronary artery disease. Am. J. Cardiol.89, 901–908 (2002).
  • Conway DS, Pearce LA, Chin BS, Hart RG, Lip GY. Prognostic value of plasma von Willebrand factor and soluble P-selectin as indices of endothelial damage and platelet activation in 994 patients with nonvalvular atrial fibrillation. Circulation107, 3141–3145 (2003).
  • Maruyama I, Bell CE, Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J. Cell. Biol.101, 363–371 (1985).
  • Suzuki K, Nishioka J, Hayashi T, Kosaka Y. Functionally active thrombomodulin is present in human platelets. J. Biochem.104, 628–632 (1988).
  • Conway EM, Nowakowski B, Steiner-Mosonyi M. Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood80, 1254–1263 (1992).
  • Raife TJ, Lager DJ, Madison KC et al. Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J. Clin. Invest.93, 1846–1851 (1994).
  • Lager DJ, Callaghan EJ, Worth SF, Raife TJ, Lentz SR. Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am. J. Pathol.146, 933–943 (1995).
  • Boffa MC, Burke B, Haudenschild C. Different localization of thrombomodulin. Ann. Biol. Clin. (Paris)45, 191–197 (1987).
  • Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J. Clin. Invest.76, 2178–2181 (1985).
  • Takano S, Kimura S, Ohdama S, Aoki N. Plasma thrombomodulin in health and diseases. Blood76, 2024–2029 (1990).
  • Takahashi Y, Hosaka Y, Niina H et al. Soluble thrombomodulin purified from human urine exhibits a potent anticoagulant effect in vitro and in vivo.Thromb. Haemost.73, 805–811 (1995).
  • Boffa MC, Karochkine M, Bérard M. Plasma thrombomodulin as a marker of endothelium damage. Nouv. Rev. Fr. Hematol.33, 529–530 (1991).
  • Seigneur M, Dufourcq P, Conri C et al. Plasma thrombomodulin: new approach of endothelium damage. Int. Angiol.12, 355–359 (1993).
  • Inukai T, Fujiwara Y, Tayama K, Aso Y, Takemura Y. Clinical significance of measurements of urinary and serum thrombomodulin in patients with non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract.33, 99–104 (1996).
  • Blann AD, Admiral J, McCollum CN. Prognostic value of increased soluble thrombomodulin and increased soluble E-selectin in ischaemic heart disease. Eur. J. Haematol.59, 115–120 (1997).
  • Constans J, Blann AD, Renard M, Guérin V, Conri C. Soluble thrombomodulin in hypercholesterolaemic patients. Lancet355, 145 (2000).
  • Gris JC, Branger B, Vécina F, al Sabadani B, Fourcade J, Schved JF. Increased cardiovascular risk factors and features of endothelial activation and dysfunction in dialyzed uremic patients. Kidney Int.46, 807–813 (1994).
  • Salomaa V, Matei C, Aleksic N et al. Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study. Lancet353, 1729–1734 (1999).
  • Rapaport SI, Rao LV. Initiation and regulation of tissue factor-dependent blood coagulation. Arterioscler. Thromb.12, 1111–1121 (1992).
  • Narahara N, Enden T, Wiiger M, Prydz H. Polar expression of tissue factor in human umbilical vein endothelial cells. Arterioscler. Thromb.14, 1815–1820 (1994).
  • Ryan J, Brett J, Tijburg P, Bach RR, Kisiel W, Stern D. Tumor necrosis factor-induced endothelial tissue factor is associated with subendothelial matrix vesicles but is not expressed on the apical surface. Blood80, 966–974 (1992).
  • Rapaport SI. The extrinsic pathway inhibitor: a regulator of tissue factor-dependent blood coagulation. Thromb. Haemost.66, 6–15 (1991).
  • Warr TA, Rao LV, Rapaport SI. A sensitive, accurate assay for extrinsic pathway inhibitor (EPI) activity in rabbit plasma: paradoxical effect of excess exogenous factor X. Thromb. Res.59, 773–782 (1990).
  • Shimura M, Wada H, Wakita Y et al. Plasma tissue factor and tissue factor pathway inhibitor levels in patients with disseminated intravascular coagulation. Am. J. Hematol.52, 165–170 (1996).
  • Marmur JD, Rossikhina M, Guha A et al.Tissue factor is rapidly induced in arterial smooth muscle after balloon injury. J. Clin. Invest.91, 2253–2259 (1993).
  • Hatakeyama K, Asada Y, Marutsuka K, Sato Y, Kamikubo Y, Sumiyoshi A. Localization and activity of tissue factor in human aortic atherosclerotic lesions. Atherosclerosis133, 213–219 (1997).
  • Fryer RH, Wilson BD, Gubler DB, Fitzgerald LA, Rodgers GM. Homocysteine, a risk factor for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol.13, 1327–1333 (1993).
  • Wojtukiewicz MZ, Sierko E, Klement P, Rak J. The hemostatic system and angiogenesis in malignancy. Neoplasia3, 371–384 (2001).
  • Collen D. Natural inhibitors of fibrinolysis. J. Clin. Pathol. Suppl. (R. Coll. Pathol.)14, 24–30 (1980).
  • Levin EG, Santell L, Osborn KG. The expression of endothelial tissue plasminogen activator in vivo: a function defined by vessel size and anatomic location. J. Cell. Sci.110, 139–148 (1997).
  • Cugno M, Uziel L, Fabrizi I, Bottasso B, Maggiolini F, Agostoni A. Fibrinolytic response in normal subjects to venous occlusion and DDAVP infusion. Thromb. Res.56, 625–634 (1989).
  • Levin EG, Marotti KR, Santell L. Protein kinase C and the stimulation of tissue plasminogen activator release from human endothelial cells. Dependence on the elevation of messenger RNA. J. Biol. Chem.264, 16030–16036 (1989).
  • Loscalzo J, Braunwald E. Tissue plasminogen activator. N. Engl. J. Med.319, 925–931 (1988).
  • Wang DL, Pan YT, Wang JJ, Cheng CH, Liu CY. Demonstration of a functionally active tPA-like plasminogen activator in human platelets. Thromb. Haemost.71, 493–498 (1994).
  • Chmielewska J, Wiman B. Determination of tissue plasminogen activator and its ‘fast’ inhibitor in plasma. Clin. Chem.32, 482–485 (1986).
  • Loskutoff DJ, Edgington TE. Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc. Natl Acad. Sci. USA74, 3903–3907 (1977).
  • Sprengers ED, Princen HM, Kooistra T, van Hinsbergh VW. Inhibition of plasminogen activators by conditioned medium of human hepatocytes and hepatoma cell line Hep G2. J. Lab. Clin. Med.105, 751–758 (1985).
  • Funayama H, Sakata Y, Kitagawa S et al. Monocytes modulate the fibrinolytic balance of endothelial cells. Thromb. Res.85, 377–385 (1997).
  • Laug WE. Vascular smooth muscle cells inhibit the plasminogen activators secreted by endothelial cells. Thromb. Haemost.53, 165–169 (1985).
  • Colucci M, Paramo JA, Collen D. Generation in plasma of a fast-acting inhibitor of plasminogen activator in response to endotoxin stimulation. J. Clin. Invest.75, 818–824 (1985).
  • Dichek D, Quertermous T. Thrombin regulation of mRNA levels of tissue plasminogen activator and plasminogen activator inhibitor-1 in cultured human umbilical vein endothelial cells. Blood74, 222–228 (1989).
  • Emeis JJ, Kooistra T. Interleukin 1 and lipopolysaccharide induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J. Exp. Med.163, 1260–1266 (1986).
  • Van Hinsberg VW, Sprengers ED, Kooistra T. Effect of thrombin on the production of plasminogen activators and PA inhibitor-1 by human foreskin microvascular endothelial cells. Thromb. Haemost.57, 148–153 (1987).
  • Peiretti F, Lopez S, Deprez-Beauclair P, Bonardo B, Juhan-Vague I, Nalbone G. Inhibition of p70(S6) kinase during transforming growth factor-β 1/vitamin D(3)-induced monocyte differentiation of HL-60 cells allows tumor necrosis factor-α to stimulate plasminogen activator inhibitor-1 synthesis. J. Biol. Chem.276, 32214–32219 (2001).
  • Angleton P, Chandler WL, Schmer G. Diurnal variation of tissue-type plasminogen activator and its rapid inhibitor (PAI-1). Circulation79, 101–106 (1989).
  • Andreotti F, Biondi-Zoccai GG. Potentiation of fibrinolytic therapy in acute myocardial infarction: expanding the role of ACE-inhibitors. Thromb. Haemost.88, 176–178 (2002).
  • Wada H, Minamikawa K, Wakita Y et al. Increased vascular endothelial cell markers in patients with disseminated intravascular coagulation. Am. J. Hematol.44, 85–88 (1993).
  • Bevilacqua MP, Stengelin S, Gimbrone MA Jr, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science243, 1160–1165 (1989).
  • Massaguer A, Engel P, Tovar V et al. Characterization of platelet and soluble-porcine P-selectin (CD62P). Vet. Immunol. Immunopathol.96, 169–181 (2003).
  • Koch AE, Halloran MM, Haskell CJ, Shah MR, Polverini PJ. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature376, 517–519 (1995).
  • Blann AS, Lip GYH. The endothelium in atherothrombotic disease: assessment of function, mechanism and clinical implications. Blood Coagul. Fibrinolysis9, 297–306 (1998).
  • Blann AS, Waite MA. von Willebrand factor and solute E-selectin in Hypertension Influence of treatment value in predicting the progression of atherosclerosis. Coron. Artery Dis.7, 143–147 (1996).
  • Blankenberg S, Rupprecht HJ, Bickel C et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation104, 1336–1342 (2001).
  • Alexiou D, Karayiannakis AJ, Syrigos KN et al. Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients: correlations with clinicopathological features, patient survival and tumour surgery. Eur. J. Cancer37, 2392–2397 (2001).
  • Papapetropoulos A, García-Cardeña G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest.100, 3131–3139 (1997).
  • Blum S, Issbrüker K, Willuweit A et al. An inhibitory role of the phosphatidylinositol 3-kinase-signaling pathway in vascular endothelial growth factor-induced tissue factor expression. J. Biol. Chem.276, 33428–33434 (2001).
  • Yoshizumi M, Kurihara H, Morita T et al. Interleukin 1 increases the production of endothelin-1 by cultured endothelial cells. Biochem. Biophys. Res. Commun.166, 324–329 (1990).
  • Robanyi GM, Polokoff MA. Endothelins: Molecular biology, biochemistry, pharmacology, physiology and pathophysiology. Pharmacol. Rev.46, 325–415 (1994).
  • Yoshizumi M, Kurihara H, Sugiyama T et al. hemodynamic shear stress stimulates endothelin preduction by cultured endothelial cells. Biochem. Biophys. Res. Commun.161, 859–864 (1989).
  • Kourembanas S, Marsden PA, McQuillan LP, Faller DV. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest.88, 1054–1057 (1991).
  • Kohno M, Murakawa K, Yokokawa K et al. Production of endothelin by cultured porcine endothelial cells: modulation by adrenaline. J. Hypertens.7, S130–S131 (1989).
  • Barton M, Shaw S, d’Uscio LV, Moreau P, Lüscher TF. Angiotensin II increases vascular and renal endothelin-1 and functional endothelin-converting enzyme activity in vivo: role of ETA receptors for endothelin regulation. Biochem. Biophys. Res. Commun.238, 861–865 (1997).
  • Morise T, Takeuchi Y, Kawano M, Koni I, Takeda R. Increased plasma levels of immunoreactive endothelin and von Willebrand factor in NIDDM patients. Diabetes Care18, 87–89 (1995).
  • Ray SG, McMurray JJ, Morton JJ, Dargie HJ. Circulating endothelin in acute ischemic syndromes. Br. Heart J.67, 383–386 (1992).
  • Galie N, Manes A, Branzi A. The endothelin system in pulmonary arterial HypertensionCardiovasc. Res.61, 227–237 (2004).
  • Omland T, Lie RT, Aakvaag A, Aarsland T, Dickstein K. Plasma endothelin determination as a prognostic indicator of one-year mortality after acute myocardial infarction. Circulation89, 1573–1579 (1994).
  • McMurray JJ, Ray SG, Abdullah I, Dargie HJ, Morton JJ. Plasma endothelin in chronic heart failure. Circulation85, 1374–1379 (1992).
  • Tuinenburg AE, Van Veldhuisen DJ, Boomsma F, Van Den Berg MP, De Kam PJ, Crijns HJ. Comparison of plasma neurohormones in congestive heart failure patients with atrial fibrillation versus patients with sinus rhythm. Am. J. Cardiol.81, 1207–1210 (1998).
  • Pacher R, Stanek B, Hülsmann M et al. Prognostic impact of big endothelin-1 plasma concentrations compared with invasive hemodynamic evaluation in severe heart failure. J. Am. Coll. Cardiol.27, 633–641 (1996).
  • McDermott JR, Studies on the catabolism of Ng-methyl arginine, Ng, Ng-dimethylarginine and Ng, Ng-dimethylarginine in the rabbit. Biochem J.154, 179–184 (1976).
  • Cooke JP. Does ADMA cause endothelial dysfunction? Arterioscler. Thromb. Vasc. Biol.20, 2032–2037 (2000).
  • Cooke JP. Asymmetrical dimethyl arginine: the uber marker? Circulation109, 1813–1818 (2004).
  • Matsuoka H, Itoh S, Kimoto M et al. Asymmetrical dimethyl arginine, an endogenous nitric oxide synthase inhibitor in experimental Hypertension.Hypertension29, 242–247 (1997).
  • Abbasi F, Asagmi T, Cooke JP, Lamendola C, McLaughlin T, Reaven GM, Stuehlinger M, Tsao PS. Plasma concentrations of asymmetric dimethylarginine are increased in patients with Type 2 diabetes mellitus. Am. J. Cardiol.88, 1201–1203 (2001).
  • Böger RH, Bode-Böger SM, Szuba A et al. Asymmetrical dimethyl arginine (ADMA): a novel risk factor for endothelial function: its role in hypercholesterolemia. Circulation98, 1842–1847 (1998).
  • Miyazaki H, Matsuoka H, Cooke JP et al. Endogenous nitric oxide synthase inhibitor: a novel marker of AtherosclerosisCirculation99, 1141–1146 (1999).
  • Vallance P, Leone A, Claver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet339, 572–575 (1992).
  • George F, Brouqui P, Boffa MC et al. Demonstration of Rickettsia conorii-induced endothelial injury in vivo by measuring circulating endothelial cells, thrombomodulin, and von Willebrand factor in patients with Mediterranean spotted fever. Blood82, 2109–2116 (1993).
  • Lefevre P, George F, Durand JM, Sampol J. Detection of circulating endothelial cells in thrombotic thrombocytopenic purpura. Thromb. Haemost.69, 522 (1993).
  • Percivalle E, Revello MG, Vago L, Morini F, Gerna G. Circulating endothelial giant cells permissive for human cytomegalovirus (HCMV) are detected in disseminated HCMV infections with organ involvement. J. Clin. Invest.92, 663–670 (1993).
  • Sowemimo-Coker SO, Meiselman HJ, Francis RB Jr. Increased circulating endothelial cells in sickle cell crisis. Am. J. Hematol.31, 263–265 (1989).
  • George F, Brisson C, Poncelet P et al. Rapid isolation of human endothelial cells from whole blood using S-Endo1 monoclonal antibody coupled to immuno-magnetic beads: demonstration of endothelial injury after angioplasty. Thromb. Haemost.67, 147–153 (1992).
  • Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood93, 2951–2958 (1999).
  • Nadar SK, Lip GYH, Lee KW, Blann AD. Circulating endothelial cells in acute ischaemic strokes. Thromb. Haemost.94, 707–712 (2005).
  • Bull TM, Golpon H, Hebbel RP et al. Circulating endothelial cells in pulmonary hypertension. Thromb. Haemost.90, 698–703 (2003).
  • Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP. Circulating activated endothelial cells in sickle cell anaemia. N. Engl. J. Med.337, 1584–1590 (1997).
  • Woywodt A, Streiber F, de Groot K, Regelsberger H, Haller H, Haubitz M. Circulating endothelial cells as markers for ANCA-associated small-vessel vasculitis. Lancet361, 206–210 (2003).
  • Makin AJ, Blann AD, Chung NA, Silverman SH, Lip GY. Assessment of endothelial damage in atherosclerotic vascular disease by quantification of circulating endothelial cells. Relationship with von Willebrand factor and tissue factor. Eur. Heart J.25, 371–376 (2004).
  • Blann AD, Woywodt A, Bertolini F et al. Circulating endothelial cells. Biomarker of vascular disease. Thromb. Haemost.93, 228–235 (2005).
  • Chong AY, Blann AD, Patel J, Freestone B, Hughes E, Lip GY. Endothelial dysfunction and damage in congestive heart failure: relation of flow-mediated dilation to circulating endothelial cells, plasma indexes of endothelial damage, and brain natriuretic peptide. Circulation110, 1794–1798 (2004).
  • Lee KW, Lip GY, Tayebjee M, Foster W, Blann AD. Circulating endothelial cells, von Willebrand factor, interleukin-6 and prognosis in patients with acute coronary syndromes. Blood105, 526–532 (2005).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275, 964–967 (1997).
  • Hill JM, Zalos G, Halcox JP et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med.348, 593–600 (2003).
  • Vasa M, Fichtlscherer S, Aicher A et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res.89, E1–E7 (2001).
  • Werner N, Kosiol S, Schiegl T et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med.353, 999–1007 (2005).
  • Blaise S, Maas R, Trocme C et al. Correlation of biomarkers of endothelium dysfunction and matrix remodeling in patients with systemic sclerosis. J. Rheumatol.36, 984–988 (2009).
  • Takeda M, Yamashita T, Shinohara M et al. Plasma tetrahydrobiopterin/dihydrobiopterin ratio: a possible marker of endothelial dysfunction. Circ. J.73, 955–962 (2009).
  • Oelze M, Mollnau H, Hoffmann N et al. Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction. Circ. Res.87, 999–1005 (2000).
  • Warnholtz A, Wild P, Ostad MA et al. Effects of oral niacin on endothelial dysfunction in patients with coronary artery disease: results of the randomized, double-blind, placebo-controlled INEF study. Atherosclerosis204, 216–221 (2009).
  • Mallat Z, Hugel B, Ohan J, Lesèche G, Freyssinet JM, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation99, 348–353 (1999).
  • Boulanger CM, Scoazec A, Ebrahimian T et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation104, 2649–2652 (2001).
  • Morel O, Hugel B, Jesel L et al. Sustained elevated amounts of circulating procoagulant membrane microparticles and soluble GPV after acute myocardial infarction in diabetes mellitus. Thromb. Haemost.91, 345–353 (2004).
  • Lee YJ, Jy W, Horstman LL et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multi infarct dementias. Thromb. Res.72, 295–304 (1993).
  • Ederhy S, Di Angelantonio E, Mallat Z et al. Levels of circulating procoagulant microparticles in nonvalvular atrial fibrillation. Am. J. Cardiol.100, 989–994 (2007).
  • Joannides R, Richard V, Haefeli WE, Linder L, Lüscher TF, Thuillez C. Role of basal and stimulated release of nitric oxide in the regulation of radial artery caliber in humans. Hypertension26, 327–331 (1995).
  • Corretti MC, Anderson TJ, Benjamin EJ et al.; International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol.39, 257–265 (2002).
  • Celermajer DS, Sorensen KE, Gooch VM et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet340, 1111–1115 (1992).
  • Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J. Am. Coll. Cardiol.24, 1468–1474 (1994).
  • Deng YB, Wang XF, Le GR, Zhang QP, Li CL, Zhang YG. Evaluation of endothelial function in hypertensive elderly patients with high-resolution ultrasonography. Clin. Cardiol.22, 705–710 (1999).
  • Watts GF, O Brien SF, Silvester W, Millar JA. Impaired endothelium dependent and independent dilatation of forearm resistance arteries in men with diet treated non-insulin-dependent diabetes: role of dyslipidaemia. Clin. Sci. (Colch.)91, 567–573 (1996).
  • Takase B, Uehata A, Akima T. Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease. Am. J. Cardiol.82, 1535–1539 (1998).
  • Stroes ES, Koomans HA, De Bruin TW, Rabelink TJ. Vascular function in the forearm of hypercholesterolemia patients off and on lipid-lowering medication. Lancet346, 467–471 (1995).
  • Celermajer DS, Sorensen KE, Spiegelhalter DJ, Geroggakapoulos D, Robinson J, Deanfield JE. Ageing is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J. Am Coll Cardiol.24, 471–476 (1994).
  • van der Heijden-Spek JJ, Staessen JA, Fagard RH, Hoeks AP, Boudier HA, van Bortel LM. Effect of age on brachial artery wall properties differs from the aorta and is gender dependent: a population study. Hypertension35, 637–642 (2000).
  • Raitakari OT, Adams MR, McCredie RJ, Griffiths KA, Celermajer DS. Arterial endothelial dysfunction related to passive smoking is potentially reversible in healthy young adults. Ann. Intern. Med.130, 578–581 (1999).
  • O’ Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-Coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation95, 1126–1131 (1997).
  • Muiesan ML, Salvetti M, Monteduro C et al. Effect of treatment on flow-dependent vasodilatation of the brachial artery in essential hypertension. Hypertension33, 575–580 (1999).
  • Anderson TJ, Uehata A, Gerhard MD et al. Close relation of endothelial function in the human coronary and peripheral circulations. J. Am. Coll. Cardiol.26, 1235–1241 (1995).
  • Matsuo S, Matsumoto T, Takashima H et al. The relationship between flow-mediated brachial artery vasodilation and coronary vasomotor responses to bradykinin: comparison with those to acetylcholine. J. Cardiovasc. Pharmacol.44, 164–170 (2004).
  • Teragawa H, Ueda K, Matsuda K et al. Relationship between endothelial function in the coronary and brachial arteries. Clin. Cardiol.8, 460–466 (2005).
  • Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study. Circulation115, 2390–2397 (2007).
  • Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation108, 2093–2098 (2003).
  • Yoshida T, Kawano H, Miyamoto S et al. Prognostic value of flow-mediated dilation of the brachial artery in patients with cardiovascular disease. Intern. Med.45, 575–579 (2006).
  • Karatzis EN, Ikonomidis I, Vamvakou GD et al. Long-term prognostic role of flow-mediated dilatation of the brachial artery after acute coronary syndromes without ST elevation. Am. J. Cardiol.98, 424–428 (2006).
  • Kitta Y, Obata JE, Nakamura T et al. Persistent impairment of endothelial vasomotor function has a negative impact on outcome in patients with coronary artery disease. J. Am. Coll. Cardiol.53, 323–330 (2009).
  • Meyer B, Mörtl D, Strecker K et al. Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. J. Am. Coll. Cardiol.46, 1011–1018 (2005).
  • Sorensen KE, Celermajer DS, Spiegelhalter DJ et al. Non-invasive measurement of human endothelium dependent arterial responses: accuracy and reproducibility. Br. Heart J.74, 247–253 (1995).
  • Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N. Engl. J. Med.315, 1046–1051 (1986).
  • Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans: progressive endothelial dysfunction with different early stage of coronary atherosclerosis. Circulation83, 391–401 (1991).
  • Collins P. Coronary flow reserve. Br. Heart J.69, 279–281 (1993).
  • Gullu H, Erdogan D, Caliskan M et al. Interrelationship between noninvasive predictors of atherosclerosis: transthoracic coronary flow reserve, flow-mediated dilation, carotid intima-media thickness, aortic stiffness, aortic distensibility, elastic modulus, and brachial artery diameter. Echocardiography3, 35–42 (2006).
  • Pellegrino T, Storto G, Filardi PP et al. Relationship between brachial artery flow-mediated dilation and coronary flow reserve in patients with peripheral artery disease. J. Nucl. Med.46, 1997–2002 (2005).
  • Doucette JW, Corl PD, Payne HM et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation85, 1899–1911 (1992).
  • Marcus M, Wright C, Doty D et al. Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ. Res.49, 877–891 (1981).
  • Rossen JD, Quillen JE, Lopez AG, Stenberg RG, Talman CL, Winniford MD. Comparison of coronary vasodilation with intravenous dipyridamole and adenosine. J. Am. Coll. Cardiol.18, 485–491 (1991).
  • Marcus ML, Chilian WM, Kanatsuka H, Dellsperger KC, Eastham CL, Lamping KG. Understanding the coronary circulation through studies at the microvascular level. Circulation82, 1–7 (1990).
  • Olsen MH, Wachtell K, Meyer C et al. Association between vascular dysfunction and reduced myocardial flow reserve in patients with hypertension: a LIFE substudy. J. Hum. Hypertens.18, 445–452 (2004).
  • Nahser PJ Jr, Brown RE, Oskarsson H, Winniford MD, Rossen JD. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation91, 635–640 (1995).
  • Selke FW, Armstrong ML, Harrison DG. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic patients. Circulation81, 1586–1593 (1990).
  • Yokoyama I, Ohtake T, Momomura S, Nishikawa J, Sasaki Y, Omata M. Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation94, 3232–3238 (1996).
  • Tok D, Gullu H, Erdogan D et al. Impaired coronary flow reserve in hemodialysis patients: a transthoracic Doppler echocardiographic study. Nephron. Clin. Pract.101, c200–c206 (2005).
  • Ashikaga T, Nishizaki M, Fujii H et al. Examination of the microcirculation damage in smokers versus nonsmokers with vasospastic angina pectoris. Am. J. Cardiol.100, 962–964 (2007).
  • Sulli A, Ghio M, Bezante GP et al. Blunted coronary flow reserve in systemic sclerosis. Rheumatology (Oxford)43, 505–509 (2004).
  • Hirata K, Kadirvelu A, Kinjo M et al. Altered coronary vasomotor function in young patients with systemic lupus erythematosus. Arthritis Rheum.56, 1904–1909 (2007).
  • Schächinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation101, 1899–1906 (2000).
  • Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation101, 948–954 (2000).
  • Hokanson DE, Sumner DS, Strandness DE Jr. An electrically calibrated plethysmograph for direct measurement of limb blood flow. IEEE Trans. Biomed. Eng.22, 25–29 (1975).
  • Creager MA, Cooke JP, Mendelsohn ME et al. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J. Clin. Invest.86, 228–234 (1990).
  • Heitzer T, Ylä-Herttuala S, Luoma J et al. Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL. Circulation93, 1346–1353 (1996).
  • Millgård J, Hägg A, Sarabi M, Lind L. Captopril, but not nifedipine, improves endothelium-dependent vasodilation in hypertensive patients. J. Hum. Hypertens.12, 511–516 (1998).
  • Tzemos N, Lim PO, MacDonald TM. Nebivolol reverses endothelial dysfunction in essential hypertension: a randomized, double-blind, crossover study. Circulation104, 511–514 (2001).
  • Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation104, 2673–2678 (2001).
  • Münzel T, Sinning C, Post F, Warnholtz A, Schulz E. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann. Med.40, 180–196 (2008).
  • Gori T, Dragoni S, Lisi M et al. Conduit artery constriction mediated by low flow a novel noninvasive method for the assessment of vascular function. J. Am. Coll. Cardiol.51, 1953–1958 (2008).
  • Schulz E, Tsilimingas N, Rinze R et al. Functional and biochemical analysis of endothelial (dys)function and NO/cGMP signaling in human blood vessels with and without nitroglycerin pretreatment. Circulation105, 1170–1175 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.