250
Views
20
CrossRef citations to date
0
Altmetric
Review

Hypertension in obstructive sleep apnea: risk and therapy

&
Pages 619-626 | Published online: 10 Jan 2014

References

  • Parish JM, Somers VK. Obstructive sleep apnea and cardiovascular disease. Mayo Clin. Proc.79, 1036–1046 (2004).
  • Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnea-hypopnea with or without treatment with continuous positive airway pressure: an observational study. Lancet365, 1046–1053 (2005).
  • Lavie P, Yosef B, Rubin A. Prevalence of sleep apnea syndrome among patients with essential hypertension. Am. Heart J.108, 373–376 (1984).
  • Kales A, Bixler E, Cadieux Ret al. Sleep apnea in a hypertensive population. Lancet2(8410), 1005–1008 (1984).
  • Fletcher E, Debehnke R, Lovoi Met al. Undiagnosed sleep apnea in patients with essential hypertension. Ann. Intern. Med.103, 190–195 (1985).
  • Williams AJ, Houston D, Finberg S, Lam C, Kinney JL, Santiago S. Sleep apnea syndrome and essential hypertension. Am. J. Cardiol.55, 1019–1022 (1985).
  • Stoohs RA, Gingold J, Cohrs S, Harter R, Finlayson E, Guilleminault C. Sleep-disordered breathing and systemic hypertension in the older male. J. Am. Geriatr. Soc.44(11), 1295–1300 (1996).
  • Silverberg DS, Oksenberg A, Iaina A. Sleep-related breathing disorders as a major cause of essential hypertension: fact or fiction? Curr. Opin. Nephrol. Hypertens.7, 353–357 (1998).
  • Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specification (1st Edition). American Academy of Sleep Medicine, IL, USA, 45–46 (2007).
  • Somers VK, Mark AL, Zavala DC, Abboud FM. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. J. Appl. Physiol.67, 2095–2100 (1989).
  • Katragadda S, Xie A, Puleo D, Skatrud JB, Morgan BJ. Neural mechanism of the pressor response to obstructive and nonobstructive apnea. J. Appl. Physiol.83(6), 2048–2054 (1997).
  • Prabhakar NR, Lkine DD. Ventilatory changes during intermittent hypoxia: importance of pattern and duration. High Alt. Med. Biol.3(2), 195–204 (2002).
  • Cutler MJ, Swift NM, Keller DM, Wasmund WL, Burk JR, Smith ML. Periods of intermittent hypoxic apnea can alter chemoreflex control of sympathetic nerve activity in humans. Am. J. Physiol. Heart Circ. Physiol.287(5), H2054–H2060 (2004).
  • Lesske J, Fletcher EC, Bao G, Unger T. Hypertension caused by chronic intermittent hypoxia-influence of chemoreceptors and sympathetic nervous system. J. Hypertens.15(12 Pt 2), 1593–1603 (2007).
  • Brooks D, Horner RL, Kozar LFet al. Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J. Clin. Invest.99(1), 106–109 (1997).
  • Garpestad E, Katayama H, Parker JAet al. Stroke volume and cardiac output decrease at termination of obstructive apneas. J. Appl. Physiol.73(5), 1743–1748 (1992).
  • Zwillich C, Devlin T, White Det al. Bradycardia during sleep apnea: characteristics and mechanism. J. Clin. Invest.69, 1286–1292 (1982).
  • Schafer H, Hasper E, Ewig Set al. Pulmonary haemodynamics in obstructive sleep apnoea: time course and associated factors. Eur. Respir. J.12(3), 679–684 (1998).
  • Nieto F, Young T, Palta Met al. Association of sleep-disordered breathing, sleep apnea and hypertension in a large community based study. Sleep Heart Health Study. JAMA283, 1829–1836 (2000).
  • Peppard P, Young T, Palta M, Skatrud J. Prospective study of association between sleep-disordered breathing and hypertension. N. Engl. J. Med.342, 1378–1384 (2000).
  • Logan AG, Perlikowski SM, Mente Aet al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J. Hypertens.19(12), 2271–2277 (2001).
  • Lavie P, Hoffstein V. Sleep apnea syndrome: a possible contributing factor to resistant hypertenion. Sleep24(6), 721–725 (2001).
  • Martínez-García MA, Gómez-Aldaraví R, Martínez TG, Soler-Cataluña JJ, Bernácer-Alpera B, Román-Sánchez P. Sleep-disordered breathing in patients with difficult-to-control hypertension. Arch. Broncopneumol.42(1), 14–20 (2006).
  • Esler M, Jennings G, Biviano B, Lambert G, Hasking G. Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J. Cardiovasc. Pharmacol.8(Suppl. 5), S39–S43 (1986).
  • Rumantir MS, Jennings GL, Lambert GW, Kaye DM, Seals DR, Esler MD. The ‘adrenaline hypothesis’ of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension. J. Hypertens.18(6), 675–677 (2000).
  • Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Invest.96(4), 1897–1904 (1995).
  • Morgan BJ, Crabtree DC, Palta M, Skatrud JB. Combined hypoxia and hypercapnia evokes long-lasting sympathetic activation in humans. J. Appl. Physiol.76, 205–213 (1995).
  • Xie A, Skatrud JB, Puleo DS, Morgan BJ. Exposure to hypoxia produces long-lasting sympathetic activaion in humans. J. Appl. Physiol.91(4), 1555–1562 (2001).
  • Cutler MJ, Swift NM, Keller DM, Wasmund WL, Smith ML. Hypoxia-mediated prolonged elevation of sympathetic nerve activity after periods of intermittent hypoxic apnea. J. Appl. Physiol.96, 754–761 (2004).
  • Leuenberger UA, Brubaker D, Quraishi S, Hogeman CS, Imadojemu VA, Gray KS. Effects of intermittent hypoxia on sympathetic activity and blood pressure in humans. Auton. Neurosci.121, 87–93 (2005).
  • Morgan BJ, Denahan T, Ebert TJ. Neurocirculatory concsequences of negative itnrathoracic pressure vs. asphyxia during voluntary apnea. J. Appl. Physiol.74(6), 2969–2975 (1993).
  • Khayat RN, Przybylowski T, Meyer KC, Skatrud JB, Morgan BJ. Role of sensory input from the lungs in control of muscle sympathetic nerve activity during and after apnea in humans. J. Appl. Physiol.97(2), 635–640 (2004).
  • Weiss JW, Liu MD, Huang J. Physiological basis for a causal relationship of obstructive sleep apnoea to hypertension. Exp. Physiol.96, 809–813 (2004).
  • Chen J, He L, Dinger B, Stnsaas LJ, Fidone S. Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am. J. Physiol. Lung Cell Mol. Physiol.282, L1314–L1323 (2001).
  • Phillips BG, Narkiewicz K, Pesek CA, Haynes WG, Dyken ME, Somers VK. Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J. Hypertens.17(1), 61–66 (1999).
  • Kanagy NL, Walker BR, Nelin LD. Role of endothelin in intermittent hypoxia-induced hypertension. Hypertension37(2 Part 2), 511–515 (2001).
  • Allahdadi KJ, Walker BR, Kanagy NL. Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension45(4), 705–709 (2005).
  • Esler M, Julius S, Randall O, DeQuattro V, Zweifler A. High-renin essential hypertension: adrenergic cardiovascular correlates. Clin. Sci. Mol. Med.3(Suppl.), S181–S184 (1976).
  • Katholi RE, Winternitz SR, Oparil S. Role of the renal nerves in the pathogenesis of one-kidney renal hypertension in the rat. Hypertension3(4), 404–409 (1981).
  • Farsang C, Juhász I, Kapocsi J, Vajda L, Székács B. Effect of prazosin and oxprenolol on plasma renin activity and blood pressure in patients with essential hypertension. Cardiology67(3), 164–171 (1981).
  • Calhoun DA, Nishizaka MK, Zaman MA, Harding SM. Aldosterone excretion among subjects with resistant hypertension and symptoms of sleep apnea. Chest125(1), 112–117 (2004).
  • Ma X, Abboud FM, Chapleau MW. A novel effect of angiotensin on renal sympathetic nerve activity in mice. J. Hypertens.19(3 Pt 2), 609–618 (2001).
  • Bao G, Metreveli N, Li R, Taylor A, Fletcher EC. Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J. Appl. Physiol.83(1), 95–101 (1997).
  • Fletcher EC, Bao G, Li R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension34(2), 309–314 (1999).
  • Moller DS, Lind P, Strunge B, Pedersen EB. Abnormal vasoactive hormones and 24-h blood pressure in obstructive sleep apnea. Am. J. Hypertens.16(4), 274–280 (2003).
  • Bradley TD, Tkacova R, Hall MJ, Ando S, Floras JS. Augmented sympathetic neural response to simulated obstructive apnoea in human heart failure. Clin. Sci. (Lond.)104(3), 231–238 (2003).
  • Brooks D, Horner RL, Floras JS, Kozar LF, Render-Teixeira CL, Phillipson EA. Baroreflex control of heart rate in a canine model of obstructive sleep apnea. Am. J. Respir. Crit. Care Med.159(4 Pt 1), 1293–1297 (1999).
  • Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation97(10), 943–945 (1998).
  • Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc. Natl Acad. Sci. USA100(17), 10073–10078 (2003).
  • Fletcher EC, Lesske J, Culman J, Miller CC, Unger T. Sympathetic denervation blocks blood pressure elevation in episodic hypoxia. Hypertension20(5), 612–619 (1992).
  • Rey S, Del Rio R, Iturriaga R. Contribution of endothelin-1 and endothelin A and B receptors to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Adv. Exp. Med. Biol.605, 228–232 (2008).
  • Rey S, Del Rio R, Iturriaga R. Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Brain Res.1086(1), 152–159 (2006).
  • Li Z, Mao HZ, Abboud FM, Chapleau MW. Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ. Res.79(4), 802–811 (1996).
  • Jelic S, Padeletti M, Kawut SMet al. Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation117(17), 2270–2278 (2008).
  • Sung KC, Suh JY, Kim BSet al. High sensitivity C-reactive protein as an independent risk factor for essential hypertension. Am. J. Hypertens.16(6), 429–433 (2003).
  • Shamsuzzaman AS, Winnicki M, Lanfranchi Pet al. Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation105, 2462–2464 (2002).
  • Kokturk O, Ciftci TU, Mollarecep E, Ciftci B. Elevated C-reactive protein levels and increased cardiovascular risk in patients with obstructive sleep apnea syndrome. Int. Heart J.46, 801–809 (2005).
  • Ohga E, Nagase T, Tomita Tet al. Increased levels of circulating ICAM-1, VCAM-1, and L-selectin in obstructive sleep apnea syndrome. J. Appl. Physiol.87, 10–14 (1999).
  • Vgontzas AN, Biler EO, Chrousos GP. Metabolic disturbances in obesity versus sleep apnoea: the importance of visceral obesity and insulin resistance. J. Intern. Med.254, 32–44 (2003).
  • Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y. Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J. Appl. Physiol.94, 179–184 (2003).
  • Yokoe T, Minoguchi K, Matsuo Het al. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation107, 1129–1134 (2003).
  • Schulz R, Mahmoudi S, Hattar K et al. Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am. J. Respir. Crit. Care Med.165(7), 934–939 (2002).
  • Dyugovskaya L, Lavie P, Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am. J. Respir. Crit. Care Med.165(7), 934–939 (2002).
  • Wilcox CS. Reactive oxygen species: roles in blood pressure and kidney function. Curr. Hypertens. Rep.4(2), 160–166 (2002).
  • Lassègue B, Griendling KK. Reactive oxygen species in hypertension; an update. Am. J. Hypertens.17(9), 852–860 (2004).
  • Brindeiro TCM, da Silva AQ, Allahdadi KJ, Youngblood V, Kanagy NL. Reactive oxygen species contribute to sleep apnea-induced hypertension in rats. Am. J. Physiol. Heart Circ. Physiol.293(5), H2971–H2976 (2007).
  • Lavie L. Oxidative stress – a unifying paradigm in obstructive sleep apnea and comorbidities. Prog. Cardiovasc. Dis.51(4), 303–312 (2009).
  • Lavie L, Dyugovskaya L, Lavie P. Sleep apnea related intermittent hypoxia and atherogenesis: adhesion molecules and monocytes/endothelial cells interactions. Atherosclerosis183, 183–184 (2005).
  • Koller A, Huang A. Impaired nitric oxide-mediated flow-induced dilation in arterioles of spontaneously hypertensive rats. Circ. Res.74(3), 416–421 (1994).
  • Kato M, Roberts-Thomson P, Phillips BGet al. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation102(21), 2607–2610 (2000).
  • Trzepizur W, Gagnadoux F, Abraham Pet al. Microvascular endothelial function in obstructive sleep apnea: impact of continuous positive airway pressure and mandibular advancement. Sleep Med. DOI: 10.1016/j.sleep.2008.06.013 (2009) (Epub ahead of print).
  • Ip MS, Lam B, Chan LYet al. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am. J. Respir. Crit. Care Med.162(6), 2166–2171 (2000).
  • Giles TL, Lasserson TJ, Smith BH, White J, Wright J, Cates CJ. Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst. Rev.3, CD001106 (2006).
  • Barnes M, Houston D, Worsnop CJet al. A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea. Am. J. Respir. Crit. Care Med.165, 773–780 (2002).
  • Ip MS, Tse HF, Lam B, Tsang KW, Lam WK. Endothelial function in obstructive sleep apnea and response to treatment. Am. J. Respir. Crit. Care Med.169, 348–353 (2004).
  • Kaneko Y, Floras JS, Usui Ket al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N. Engl. J. Med.348, 1233–1241 (2003).
  • Mansfield DR, Gollogly NC, Kaye DM, Richardson M, Bergin P, Naughton MT. Controlled trial of continuous positive airway pressure in obstructive sleep apnea and heart failure. Am. J. Respir. Crit. Care Med.169, 361–366 (2004).
  • Mills PJ, Kennedy BP, Loredo JS, Dimsdale JE, Ziegler MG. Effects of nasal continuous positive airway pressure and oxygen supplementation on norepinephrine kinetics and cardiovascular responses in obstructive sleep apnea. J. Appl. Physiol.100, 343–348 (2006).
  • Monasterio C, Vidal S, Duran Jet al. Effectiveness of continuous positive airway pressure in mild sleep apnea-hypopnea syndrome. Am. J. Respir. Crit. Care Med.164, 939–943 (2001).
  • Barnes M, McEvoy RD, Banks Set al. Efficacy of positive airway pressure and oral appliance in mild to moderate obstructive sleep apnea. Am. J. Respir. Crit. Care Med.170, 656–664 (2004).
  • Dimsdale JE, Loredo JS, Profant J. Effect of continuous positive airway pressure on blood pressure: a placebo trial. Hypertension35, 144–147 (2000).
  • Faccenda JF, Mackay TW, Boon NA, Douglas NJ. Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome. Am. J. Respir. Crit. Care Med.163, 344–348 (2001).
  • Pepperell JC, Ramdassingh-Dow S, Crosthwaite Net al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomized parallel trial. Lancet359, 204–210 (2002).
  • Becker HF, Jerrentrup A, Ploch Tet al. Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation107, 68–73 (2003).
  • Campos-Rodriguez F, Grilo-Reina A, Perez-Ronchel Jet al. Effect of continuous positive airway pressure on ambulatory BP in patients with sleep apnea and hypertension: a placebo-controlled trial. Chest129, 1459–1467 (2006).
  • Norman D, Loredo JS, Nelesen RAet al. Effects of continuous positive airway pressure versus supplemental oxygen on 24-hour ambulatory blood pressure. Hypertension47, 840–845 (2006).
  • Montserrat JM, Garcia-Rio F, Barbe F. Diagnostic and therapeutic approach to nonsleepy apnea. Am. J. Respir. Crit. Care Med.176(1), 6–9 (2007).
  • Robinson GV, Smith DM, Langford BA, Davies RJ, Stradling JR. Continuous positive airway pressure does not reduce blood pressure in nonsleepy hypertensive OSA patients. Eur. Respir. J.27, 1229–1235 (2006).
  • Barbé F, Mayoralas LR, Duran Jet al. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. A randomized, controlled trial. Ann. Intern. Med.134(11), 1015–1023 (2001).
  • Bazzano LA, Khan Z, Reynolds K, Jiang H. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension50, 417–423 (2007).
  • Haentjens P, Van Meerhaeghe A, Moscariello Aet al. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome. Arch. Intern. Med.167, 757–765(2007).
  • Alajmi M, Mulgrew AT, Fox Jet al. Impact of continuous positive airway pressure therapy on blood pressure in patients with obstructive sleep apnea hypopnea: a meta-analysis of randomized controlled trials. Lung185, 67–72 (2007).
  • Logan AG, Tkacova R, Perlikowski SMet al. Refractory hypertension and sleep apnoea: effect of CPAP on blood pressure and baroreflex. Eur. Respir. J.21, 241–247 (2003).
  • Martínez-García MA, Gómez-Aldaraví R, Soler-Cataluña JJ, Martínez TG, Bernácer-Alpera B, Roman-Sánchez P. Positive effect of CPAP treatment on the control of difficult-to-treat hypertension. Eur. Respir. J.29, 951–957 (2007).
  • Kraiczi H, Hedner J, Peke Y, Grote L. Comparison of atenolol, amlodipine, enalapril, hydrochlorothiazide, and losartan for antihypertensive treatment in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med.161, 1423–1428 (2000).
  • Campos-Rodriguez F, Peña-Griñan N, Reyes-Nuñez N et al. Mortality in obstructive sleep apnea-hypopnea patients treated with positive airway pressure. Chest128(2), 624–633 (2005).
  • Gyarfas I. Lessons from worldwide experience with hypertension control. J. Hum. Hypertens.10(Suppl. 1), S21–S25 (1996).
  • Pajak A. Myocardial infarction and complications. Longitudinal observation of a population of 280,000 women and men: Project POL-MONICA Krakow. I. Genesis and objectives of the WHO MONICA Project. Prz. Lek.53(10), 703–706 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.