65
Views
22
CrossRef citations to date
0
Altmetric
Review

Myocardial tissue engineering: the quest for the ideal myocardial substitute

&
Pages 921-928 | Published online: 10 Jan 2014

References

  • Braunwald E. Shattuck lecture – cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N. Engl. J. Med.337(19), 1360–1369 (1997).
  • Koerner MM, Durand JB, Lafuente JA, Noon GP, Torre-Amione G. Cardiac transplantation: the final therapeutic option for the treatment of heart failure. Curr. Opin. Cardiol.15(3), 178–182 (2000).
  • Gardner RS, McDonagh TA. The treatment of chronic heart failure due to left ventricular systolic dysfunction. Clin. Med.4(1), 18–22 (2004).
  • Hosenpud JD, Bennett LE, Keck BM, Boucek MM, Novick RJ. The Registry of the International Society for Heart and Lung Transplantation: seventeenth official report-2000. J. Heart Lung Transplant.19(10), 909–931 (2000).
  • Hunt SA. Current status of cardiac transplantation. JAMA280(19), 1692–1698 (1998).
  • Zimmermann WH, Eschenhagen T. Embryonic stem cells for cardiac muscle engineering. Trends Cardiovasc. Med.17(4), 134–140 (2007).
  • Kofidis T, de Bruin JL, Hoyt G et al. Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J. Heart Lung Transplant.24(6), 737–744 (2005).
  • Fukuda K, Yuasa S. Stem cells as a source of regenerative cardiomyocytes. Circ. Res.98(8), 1002–1013 (2006).
  • Kehat I, Gepstein L. Human embryonic stem cells for myocardial regeneration. Heart Fail. Rev.8(3), 229–236 (2003).
  • Muller-Ehmsen J, Whittaker P, Kloner RA et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell. Cardiol.34(2), 107–116 (2002).
  • Vacanti CA. The history of tissue engineering. J. Cell. Mol. Med.10(3), 569–576 (2006).
  • Lalan S, Pomerantseva I, Vacanti JP. Tissue engineering and its potential impact on surgery. World J. Surg.25(11), 1458–1466 (2001).
  • Kofidis T, Lee CN. From vision to mission in myocardial restoration. Asian Cardiovasc. Thorac. Ann.16(2), 91–92 (2008).
  • Buckberg GD. Basic science review: the helix and the heart. J. Thorac. Cardiovasc. Surg.124(5), 863–883 (2002).
  • Frangogiannis NG. The immune system and cardiac repair. Pharmacol. Res.58(2), 88–111 (2008).
  • Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation81(4), 1161–1172 (1990).
  • White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation76(1), 44–51 (1987).
  • Zimmermann WH. Remuscularizing failing hearts with tissue engineered myocardium. Antioxid. Redox Signal.11(8), 2011–2023 (2009).
  • Caspi O, Lesman A, Basevitch Y et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res.100(2), 263–272 (2007).
  • Birla RK, Borschel GH, Dennis RG, Brown DL. Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng.11(5–6), 803–813 (2005).
  • Zimmermann WH, Melnychenko I, Wasmeier G et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med.12(4), 452–458 (2006).
  • Kelm JM, Djonov V, Hoerstrup SP et al. Tissue-transplant fusion and vascularization of myocardial microtissues and macrotissues implanted into chicken embryos and rats. Tissue Eng.12(9), 2541–2553 (2006).
  • Shimizu T, Yamato M, Isoi Y et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res.90(3), e40 (2002).
  • Sekine H, Shimizu T, Hobo K et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation118(14 Suppl.), S145–S152 (2008).
  • Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T. Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem. Biophys. Res. Commun.341(2), 573–582 (2006).
  • Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng.12(3), 499–507 (2006).
  • Shimizu T, Sekine H, Yang J et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J.20(6), 708–710 (2006).
  • Leor J, Aboulafia-Etzion S, Dar A et al. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation102(19 Suppl. 3), III56–III61 (2000).
  • Piao H, Kwon JS, Piao S et al. Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials28(4), 641–649 (2007).
  • Kellar RS, Landeen LK, Shepherd BR, Naughton GK, Ratcliffe A, Williams SK. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation104(17), 2063–2068 (2001).
  • Simpson D, Liu H, Fan TH, Nerem R, Dudley SC Jr. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells25(9), 2350–2357 (2007).
  • Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature410(6829), 701–705 (2001).
  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature428(6983), 668–673 (2004).
  • Murry CE, Soonpaa MH, Reinecke H et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature428(6983), 664–668 (2004).
  • Naito H, Melnychenko I, Didie M et al. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation114(1 Suppl.), I72–I78 (2006).
  • Miyahara Y, Nagaya N, Kataoka M et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med.12(4), 459–465 (2006).
  • Bartosh TJ, Wang Z, Rosales AA, Dimitrijevich SD, Roque RS. 3D-model of adult cardiac stem cells promotes cardiac differentiation and resistance to oxidative stress. J. Cell. Biochem.105(2), 612–623 (2008).
  • Kelm JM, Fussenegger M. Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol.22(4), 195–202 (2004).
  • Tan MY, Zhi W, Wei RQ et al. Repair of infarcted myocardium using mesenchymal stem cell seeded small intestinal submucosa in rabbits. Biomaterials30(19), 3234–3240 (2009).
  • Wei HJ, Chen CH, Lee WY et al. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials29(26), 3547–3556 (2008).
  • Chen CH, Wei HJ, Lin WW et al. Porous tissue grafts sandwiched with multilayered mesenchymal stromal cell sheets induce tissue regeneration for cardiac repair. Cardiovasc. Res.80(1), 88–95 (2008).
  • Ott HC, Matthiesen TS, Goh SK et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med.14(2), 213–221 (2008).
  • O’Shaughnessy L. Surgical treatment of cardiac ischemia. Lancet232, 185–194 (1937).
  • Ueyama K, Bing G, Tabata Y et al. Development of biologic coronary artery bypass grafting in a rabbit model: revival of a classic concept with modern biotechnology. J. Thorac. Cardiovasc. Surg.127(6), 1608–1615 (2004).
  • Shao ZQ, Kawasuji M, Takaji K, Katayama Y, Matsukawa M. Therapeutic angiogenesis with autologous hepatic tissue implantation and omental wrapping. Circ. J.72(11), 1894–1899 (2008).
  • Birla RK, Dhawan V, Dow DE, Huang YC, Brown DL. Cardiac cells implanted into a cylindrical, vascularized chamber in vivo: pressure generation and morphology. Biotechnol. Lett.31(2), 191–201 (2009).
  • Morritt AN, Bortolotto SK, Dilley RJ et al. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation115(3), 353–360 (2007).
  • Hoffman RM. To do tissue culture in two or three dimensions? That is the question. Stem Cells11(2), 105–111 (1993).
  • Eschenhagen T, Fink C, Remmers U et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J.11(8), 683–694 (1997).
  • Freed LE, Vunjak-Novakovic G. Microgravity tissue engineering. In Vitro Cell. Dev. Biol. Anim.33(5), 381–385 (1997).
  • Hoerstrup SP, Zund G, Schnell AM et al. Optimized growth conditions for tissue engineering of human cardiovascular structures. Int. J. Artif. Organs23(12), 817–823 (2000).
  • Zimmermann WH, Schneiderbanger K, Schubert P et al. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res.90(2), 223–230 (2002).
  • Radisic M, Park H, Gerecht S, Cannizzaro C, Langer R, Vunjak-Novakovic G. Biomimetic approach to cardiac tissue engineering. Philos. Trans. R. Soc. Lond. B Biol. Sci.362(1484), 1357–1368 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.