181
Views
27
CrossRef citations to date
0
Altmetric
Theme: Vascular Disease & Stroke - Review

Engineering blood vessels using stem cells: innovative approaches to treat vascular disorders

&
Pages 1433-1445 | Published online: 10 Jan 2014

References

  • Sun GM, Gerecht S. Vascular regeneration: engineering the stem cell microenvironment. Regen. Med.4(3), 435–447 (2009).
  • Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res.85(3), 221–228 (1999).
  • Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res.87(10), 840–844 (2000).
  • Ross R. Atherosclerosis – an inflammatory disease. N. Engl. J. Med.340(2), 115–126 (1999).
  • Devanesan AJ, Laughlan KA, Girn HRS, Homer-Vanniasinkam S. Endothelial progenitor cells as a therapeutic option in peripheral arterial disease. Eur. J. Vasc. Endovasc. Surg.38(4), 475–481 (2009).
  • Al Mheid I, Quyyumi AA. Cell therapy in peripheral arterial disease. Angiology59(6), 705–716 (2009).
  • Pacilli A, Faggioli G, Stella A, Pasquinelli G. An update on therapeutic angiogenesis for peripheral vascular disease. Ann. Vasc. Surg.24(2), 258–268 (2010).
  • Korbling M, Estrov Z. Adult stem cells for tissue repair – a new therapeutic concept? N. Engl. J. Med.349(6), 570–582 (2003).
  • Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells19(3), 180–192 (2001).
  • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science284(5411), 143–147 (1999).
  • Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res.95(1), 9–20 (2004).
  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation6(2), 230–247 (1968).
  • Caplan AI. Why are MSCs therapeutic? New data: new insight. J. Pathol.217(2), 318–324 (2009).
  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells24(5), 1294–1301 (2006).
  • Pasquinelli G, Tazzari PL, Vaselli C et al. Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells25(7), 1627–1634 (2007).
  • Pasquinelli G, Pacilli A, Alviano F et al. Multidistrict human mesenchymal vascular cells: pluripotency and stemness characteristics. Cytotherapy12(3), 275–287 (2010).
  • Parolini O, Alviano F, Bagnara GP et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells26(2), 300–311 (2008).
  • Nan W, Linlin M, Zhen Z et al. Regeneration of smooth muscle cells from bone marrow: use of mesenchymal stem cells for tissue engineering and cellular therapeutics. Presented at: 3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE. Beijing, China, 11–13 June 2009.
  • Kinner B, Zaleskas JM, Spector M. Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells. Exp. Cell Res.278(1), 72–83 (2002).
  • Hirschi KK, Rohovsky SA, D’Amore PA. PDGF, TGF-β, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol.141(3), 805–814 (1998).
  • Ball SG, Shuttleworth AC, Kielty CM. Direct cell contact influences bone marrow mesenchymal stem cell fate. Int. J. Biochem. Cell Biol.36(4), 714–727 (2004).
  • Dong JD, Gu YQ, Li CM et al. Response of mesenchymal stem cells to shear stress in tissue-engineered vascular grafts. Acta Pharmacol. Sinica30(5), 530–536 (2009).
  • Joachim O, Sabine B, Birgitte J et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells22(3), 377–384 (2004).
  • Matsumoto R, Omura T, Yoshiyama M et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol.25(6), 1168–1173 (2005).
  • Kurpinski K, Lam H, Chu J et al. Transforming growth factor-β and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells28(4), 734–742 (2010).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275(5302), 964–966 (1997).
  • Takahashi T, Kalka C, Masuda H et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat. Med.5(4), 434–438 (1999).
  • Hill JM, Zalos G, Halcox JPJ et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N. Engl. J. Med.348(7), 593–600 (2003).
  • Mead LE, Prater D, Yoder MC, Ingram DA. Isolation and characterization of endothelial progenitor cells from human blood. Curr. Protoc. Stem Cell Biol. Chapter 2, Unit 2C.1 (2008).
  • Broxmeyer HE, Srour E, Orschell C et al. Cord blood stem and progenitor cells. Methods Enzymol.439–473 (2006).
  • Javed MJ, Mead LE, Prater D et al. Endothelial colony forming cells and mesenchymal stem cells are enriched at different gestational ages in human umbilical cord blood. Pediatr. Res.64(1), 68–73 (2008).
  • Xue S, Zhang HT, Zhang P et al. Functional endothelial progenitor cells derived from adipose tissue show beneficial effect on cell therapy of traumatic brain injury. Neurosci. Lett.473(3), 186–191 (2010).
  • Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood105(7), 2783–2786 (2005).
  • Pacilli A, Pasquinelli G. Vascular wall resident progenitor cells: a review. Exp. Cell Res.315(6), 901–914 (2009).
  • Yoder MC, Ingram DA. Endothelial progenitor cell: ongoing controversy for defining these cells and their role in neoangiogenesis in the murine system. Curr. Opin. Hematol.16(4), 269–273 (2009).
  • Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N. CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ. Res.98(3), e20–e25 (2006).
  • Peichev M, Naiyer AJ, Pereira D et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood95(3), 952–958 (2000).
  • Gehling UM, Ergün S, Schumacher U et al.In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood95(10), 3106–3112 (2000).
  • Case J, Mead LE, Bessler WK et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp. Hematol.35(7), 1109–1118 (2007).
  • Timmermans F, Van Hauwermeiren F, De Smedt M et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler. Thromb. Vasc. Biol.27(7), 1572–1579 (2007).
  • Krenning G, Dankers PYW, Jovanovic D, van Luyn MJA, Harmsen MC. Efficient differentiation of CD14+ monocytic cells into endothelial cells on degradable biomaterials. Biomaterials28(8), 1470–1479 (2007).
  • Fernandez Pujol B, Lucibello FC, Gehling UM et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation65(5), 287–300 (2000).
  • Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC. Cd34- blood-derived human endothelial cell progenitors. Stem Cells19(4), 304–312 (2001).
  • Zhang R, Yang H, Li M, Yao Q, Chen C. Acceleration of endothelial-like cell differentiation from CD14+ monocytes in vitro. Exp. Hematol.33(12), 1554–1563 (2005).
  • Ziegelhoeffer T, Fernandez B, Kostin S et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res.94(2), 230–238 (2004).
  • Hur J, Yoon CH, Kim HS et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol.24(2), 288–293 (2004).
  • Yoder MC, Mead LE, Prater D et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood109(5), 1801–1809 (2007).
  • Yoder MC. Defining human endothelial progenitor cells. J. Thromb. Haemost.7(Suppl. 1), 49–52 (2009).
  • Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol.28(9), 1584–1595 (2008).
  • Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science282(5391), 1145–1147 (1998).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5), 861–872 (2007).
  • Amabile G, Meissner A. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol. Med.15(2), 59–68 (2009).
  • Feng Q, Lu SJ, Klimanskaya I et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells28(4), 704–712 (2010).
  • Celermajer DS, Sorensen KE, Gooch VM et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet340(8828), 1111–1115 (1992).
  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev.84(3), 767–801 (2004).
  • Levenberg S, Zoldan J, Basevitch Y, Langer R. Endothelial potential of human embryonic stem cells. Blood110(3), 806–814 (2007).
  • Ferreira LS, Gerecht S, Shieh HF et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ. Res.101(3), 286–294 (2007).
  • Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R. Endothelial cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA99(7), 4391–4396 (2002).
  • Wang L, Li L, Shojaei F et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity21(1), 31–41 (2004).
  • Cho SW, Moon SH, Lee SH et al. Improvement of postnatal neovascularization by human embryonic stem cell-derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation116(21), 2409–2419 (2007).
  • Lu SJ, Ivanova Y, Feng Q, Luo C, Lanza R. Hemangioblasts from human embryonic stem cells generate multilayered blood vessels with functional smooth muscle cells. Regen. Med.4(1), 37–47 (2009).
  • Nourse MB, Halpin DE, Scatena M et al. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler. Thromb. Vasc. Biol.30(1), 80–89 (2010).
  • James D, Nam HS, Seandel M, Nolan D, Janovitz T, Tomishima M et al. Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent. Nat. Biotechnol.28(2), 161–166 (2010).
  • Hwang YS, Bong GC, Ortmann D, Hattori N, Moeller HC, Khademhosseinia A. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl Acad. Sci. USA106(40), 16978–16983 (2009).
  • Vodyanik MA, Slukvin II. Hematoendothelial differentiation of human embryonic stem cells. Curr. Protoc. Cell Biol. Chapter 23, Unit 23.6 (2007).
  • Choi K-D, Junying Y, Kim S-O et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells27(3), 559–567 (2009).
  • Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood105(2), 617–626 (2005).
  • Sone M, Itoh H, Yamahara K et al. Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arterioscler. Thromb. Vasc. Biol.27(10), 2127–2134 (2007).
  • Taura D, Sone M, Homma K et al. Induction and isolation of vascular cells from human induced pluripotent stem cells – brief report. Arterioscler. Thromb. Vasc. Biol.29(7), 1100–1103 (2009).
  • Hill KL, Obrtlikova P, Alvarez DF et al. Human embryonic stem cell-derived vascular progenitor cells capable of endothelial and smooth muscle cell function. Exp. Hematol.38(3), 246–257.e241 (2010).
  • Bai H, Gao Y, Arzigian M, Wojchowski DM, Wu W-S, Wang ZZ. BMP4 regulates vascular progenitor development in human embryonic stem cells through a smad-dependent pathway. J. Cell. Biochem.109(2), 363–374 (2010).
  • Wang ZZ, Au P, Chen T et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat. Biotechnol.25(3), 317–318 (2007).
  • Gerecht-Nir S, Ziskind A, Cohen S, Itskovitz-Eldor J. Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab. Invest.83(12), 1811–1820 (2003).
  • Kaufman DS, Lewis RL, Hanson ET, Auerbach R, Plendl J, Thomson JA. Functional endothelial cells derived from rhesus monkey embryonic stem cells. Blood103(4), 1325–1332 (2004).
  • Xie CQ, Zhang J, Villacorta L, Cui T, Huang H, Chen YE. A highly efficient method to differentiate smooth muscle cells from human embryonic stem cells. Arterioscler. Thromb. Vasc. Biol.27(12), e311 (2007).
  • Vo E, Hanjaya-Putra D, Zha Y, Kusuma S, Gerecht S. Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro. Stem Cell Rev. Rep.6(2), 237–247 (2010).
  • Huang H, Zhao X, Chen L et al. Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochem. Biophys. Res. Commun.351(2), 321–327 (2006).
  • Narazaki G, Uosaki H, Teranishi M S et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation118(5), 498–506 (2008).
  • Cleaver O, Melton DA. Endothelial signaling during development. Nat. Med.9(6), 661–668 (2003).
  • Cimato T, Beers J, Ding S et al. Neuropilin-1 identifies endothelial precursors in human and murine embryonic stem cells before CD34 expression. Circulation119(16), 2170–2178 (2009).
  • Goldman O, Feraud O, Ponio JBD et al. A boost of BMP4 accelerates the commitment of human embryonic stem cells to the endothelial lineage. Stem Cells27(8), 1750–1759 (2009).
  • Marchetti S, Gimond C, Iljin K et al. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J. Cell Sci.115(10), 2075–2085 (2002).
  • Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science231(4736), 397–400 (1986).
  • Zilla P. Endothelialization of vascular grafts. Curr. Opin. Cardiol.6(6), 877–886 (1991).
  • Song Y, Kamphuis MMJ, Zhang Z et al. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomater.6(4), 1269–1277 (2010).
  • Allen JB, Khan S, Lapidos KA, Ameer GA. Toward engineering a human neoendothelium with circulating progenitor cells. Stem Cells28(2), 318–328 (2010).
  • Bhattacharya V, McSweeney PA, Shi Q et al. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34+ bone marrow cells. Blood95(2), 581–585 (2000).
  • Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J.22(6), 1635–1648 (2008).
  • Griese DP, Ehsan A, Melo LG et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation108(21), 2710–2715 (2003).
  • Ranjan AK, Kumar U, Hardikar AA, Poddar P, Nair PD. Human blood vessel-derived endothelial progenitors for endothelialization of small diameter vascular prosthesis. PLoS ONE4(11), e7718 (2009).
  • Shirota T, He H, Yasui H, Matsuda T. Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng.9(1), 127–136 (2003).
  • Kaushal S, Amiel GE, Guleserian KJ et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med.7(9), 1035–1040 (2001).
  • Cho SW, Lim SH, Kim IK et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg.241(3), 506–515 (2005).
  • Wu X, Rabkin-Aikawa E, Guleserian KJ et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol.287(2), H480–H487 (2004).
  • Hanjaya-Putra D, Yee J, Ceci D, Truitt R, Yee D, Gerecht S. Vascular endothelial growth factor and substrate mechanics regulate in vitro tubulogenesis of endothelial progenitor cells. J. Cell. Mol. Med. DOI: 10.1111/j.1582-4934.2009.00981.x (2009) (Epub ahead of print).
  • Saunders RL, Hammer DA. Assembly of human umbilical vein endothelial cells on compliant hydrogels. Cell. Mol. Bioeng.3(1), 60–67 (2010).
  • Moon JJ, Saik JE, Poché RA et al. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials31(14), 3840–3847 (2010).
  • Levenberg S, Rouwkema J, Macdonald M et al. Engineering vascularized skeletal muscle tissue. Nat. Biotech.23(7), 879–884 (2005).
  • Caspi O, Lesman A, Basevitch Y et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res.100(2), 263–272 (2007).
  • Lesman A, Habib M, Caspi O et al. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng. Part A16(1), 115–125 (2010).
  • Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering: creation of long-lasting blood vessels. Nature428(6979), 138–139 (2004).
  • Au P, Daheron LM, Duda DG et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood111(3), 1302–1305 (2008).
  • Melero-Martin JM, De Obaldia ME, Kang S-Y et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ. Res.103(2), 194–202 (2008).
  • Traktuev DO, Prater DN, Merfeld-Clauss S et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ. Res.104(12), 1410–1420 (2009).
  • Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood111(9), 4551–4558 (2008).
  • Silva EA, Kim ES, Hyun JK, Mooney DJ. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA105(38), 14347–14352 (2008).
  • Pasquinelli G, Vinci MC, Gamberini C et al. Architectural organization and functional features of early endothelial progenitor cells cultured in a hyaluronan-based polymer scaffold. Tissue Eng. Part A15(9), 2751–2762 (2009).
  • Mali P, Chou B-K, Yen J et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells28(4), 713–720 (2010).
  • Ye Z, Zhan H, Mali P et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood114(27), 5473–5480 (2009).
  • Mali P, Ye Z, Hommond HH et al. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells26(8), 1998–2005 (2008).
  • Jia F, Wilson KD, Sun N et al. A nonviral minicircle vector for deriving human iPS cells. Nat. Meth.7(3), 197–199 (2010).
  • Kim K, Doi A, Wen B et al. Epigenetic memory in induced pluripotent stem cells. Nature467(7313), 285–290 (2010).
  • Polo JM, Liu S, Figueroa ME et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol.28(8), 848–855 (2010).
  • Soldner F, Hockemeyer D, Beard C et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136(5), 964–977 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.