332
Views
35
CrossRef citations to date
0
Altmetric
Theme: Vascular Disease & Stroke - Review

Biomechanical structural stresses of atherosclerotic plaques

, &
Pages 1469-1481 | Published online: 10 Jan 2014

References

  • Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet349, 1436–1442 (1997).
  • The global burden of disease: 2004 update. WHO, part 2, page 8 (2008).
  • Falk E. Why do plaques rupture? Circulation86(6 Suppl.), III30–III42 (1992).
  • Herrick JB. Clinical features of sudden obstruction of the coronary arteries. JAMA23, 2015 (1912).
  • Spencer MP, Reid JM. Quantitation of carotid stenosis with continuous-wave (C-W) Doppler ultrasound. Stroke10(3), 326–330 (1979).
  • Ricotta JJ, Pagan J, Xenos M, Alemu Y, Einav S, Bluestein D. Cardiovascular disease management: the need for better diagnostics. Med. Biol. Eng. Comput.46(11), 1059–1068 (2008).
  • Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N. Engl. J. Med.325(7), 445–453 (1991).
  • Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet351(9113), 1379–1387 (1998).
  • Vlodaver Z, Frech R, Van Tassel RA, Edwards JE. Correlation of the antemortem coronary arteriogram and the postmortem specimen. Circulation47(1), 162–169 (1973).
  • Arnett EN, Isner JM, Redwood DR et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann. Intern. Med.91(3), 350–356 (1979).
  • Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med.316(22), 1371–1375 (1987).
  • Little WC, Constantinescu M, Applegate RJ et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation78(5 Pt 1), 1157–1166 (1988).
  • Ambrose JA, Tannenbaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol.12(1), 56–62 (1988).
  • Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br. Heart J.50(2), 127–134 (1983).
  • Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation92(3), 657–671 (1995).
  • Glagov S, Rowley DA, Kohut RI. Atherosclerosis of human aorta and its coronary and renal arteries. A consideration of some hemodynamic factors which may be related to the marked differences in atherosclerotic involvement of the coronary and renal arteries. Arch. Pathol.72, 558–571 (1961).
  • Lusby RJ, Machleder HI, Jeans W et al. Vessel wall and blood flow dynamics in arterial disease. Philos. Trans. R. Soc. Lond. B Biol. Sci.294(1072), 231–239 (1981).
  • Lusby RJ, Woodcock JP, Machleder HI et al. Transient ischaemic attacks: the static and dynamic morphology of the carotid artery bifurcation. Br. J. Surg.69(Suppl.), S41–S44 (1982).
  • Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet2(8669), 941–944 (1989).
  • Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation83(5), 1764–1770 (1991).
  • Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res.71(4), 850–858 (1992).
  • Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation87(4), 1179–1187 (1993).
  • Tang D, Yang C, Zheng J et al. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann. Biomed. Eng.32(7), 947–960 (2004).
  • Li ZY, Howarth S, Trivedi RA et al. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech.39(14), 2611–2622 (2006).
  • Li ZY, Howarth SP, Tang T et al. Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J. Vasc. Surg.45(4), 768–775 (2007).
  • Tang D, Teng Z, Canton G et al. Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. Biomed. Eng. Online8, 15 (2009).
  • Tang D, Teng Z, Canton G et al. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid-structure interaction study. Stroke40(10), 3258–3263 (2009).
  • Sadat U, Li ZY, Young VE et al. Finite element analysis of vulnerable atherosclerotic plaques: a comparison of mechanical stresses within carotid plaques of acute and recently symptomatic patients with carotid artery disease. J. Neurol. Neurosurg. Psychiatry25, 286–289 (2009).
  • Teng Z, Canton G, Yuan C et al. 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: an in vivo MRI-based 3D FSI study. J. Biomech. Eng.132(3), 031007 (2010).
  • Reneman RS, Arts T, Hoeks AP. Wall shear stress – an important determinant of endothelial cell function and structure – in the arterial system in vivo. Discrepancies with theory. J. Vasc. Res.43(3), 251–269 (2006).
  • Li ZY, Howarth S, Trivedi RA et al. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech.25, 2611–2622 (2005).
  • Li MX, Beech-Brandt JJ, John LR, Hoskins PR, Easson WJ. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J. Biomech.40(16), 3715–3724 (2007).
  • Enzmann DR, Pelc NJ. Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology178(2), 467–474 (1991).
  • Slager CJ, Wentzel JJ, Gijsen FJ et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat. Clin. Pract. Cardiovasc. Med.2(8), 401–407 (2005).
  • Slager CJ, Wentzel JJ, Gijsen FJ et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat. Clin. Pract. Cardiovasc. Med.2(9), 456–464 (2005).
  • von Mises R. [Mechanik der Festen Korper im plastisch deformablen Zustand]. Göttin. Nachr. Math. Phys.1, 582–592 (1913).
  • Carew TE, Vaishnav RN, Patel DJ. Compressibility of the arterial wall. Circ. Res.23(1), 61–68 (1968).
  • Chuong CJ, Fung YC. Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech.17(1), 35–40 (1984).
  • Vito RP, Whang MC, Giddens DP, Zarins CK, Glagov S. Stress analysis of the diseased arterial cross-section. Proc. ASME Adv. Bioeng.273–276 (1990).
  • Tang D, Yang C, Kobayashi S, Ku DN. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid–structure interactions (FSI) models. J. Biomech. Eng.126(3), 363–370 (2004).
  • Williamson SD, Lam Y, Younis HF et al. On the sensitivity of wall stresses in diseased arteries to variable material properties. J. Biomech. Eng.125(1), 147–155 (2003).
  • Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler. Thromb.14(2), 230–234 (1994).
  • Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, Lee RT. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech.27(2), 195–204 (1994).
  • Lee RT, Richardson SG, Loree HM et al. Prediction of mechanical properties of human atherosclerotic tissue by high-frequency intravascular ultrasound imaging. An in vitro study. Arterioscler. Thromb.12(1), 1–5 (1992).
  • Barrett SR, Sutcliffe MP, Howarth S, Li ZY, Gillard JH. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J. Biomech.42(11), 1650–1655 (2009).
  • Maher E, Creane A, Sultan S, Hynes N, Lally C, Kelly DJ. Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J. Biomech.42(16), 2760–2767 (2009).
  • Topoleski LD, Salunke NV, Humphrey JD, Mergner WJ. Composition- and history-dependent radial compressive behavior of human atherosclerotic plaque. J. Biomed. Mater. Res.35(1), 117–127 (1997).
  • Salunke NV, Topoleski LD, Humphrey JD, Mergner WJ. Compressive stress-relaxation of human atherosclerotic plaque. J. Biomed. Mater. Res.55(2), 236–241 (2001).
  • Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng.35(4), 530–545 (2007).
  • Holzapfel GA, Stadler M, Schulze-Bauer CA. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng.30(6), 753–767 (2002).
  • Holzapfel GA, Stadler M, Gasser TC. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng.127(1), 166–180 (2005).
  • Holzapfel GA, Sommer G, Regitnig P. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng.126(5), 657–665 (2004).
  • Teng Z, Tang D, Zheng J, Woodard PK, Hoffman AH. An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J. Biomech.42(15), 2535–2539 (2009).
  • Mohan D, Melvin JW. Failure properties of passive human aortic tissue. I – uniaxial tension tests. J. Biomech.15(11), 887–902 (1982).
  • Mohan D, Melvin JW. Failure properties of passive human aortic tissue. II – biaxial tension tests. J. Biomech.16(1), 31–44 (1983).
  • Lendon CL, Davies MJ, Born GV, Richardson PD. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis87(1), 87–90 (1991).
  • Burleigh MC, Briggs AD, Lendon CL, Davies MJ, Born GV, Richardson PD. Collagen types I and III, collagen content, GAGs and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis96(1), 71–81 (1992).
  • Li ZY, Howarth SP, Tang T, Gillard JH. How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke37(5), 1195–1199 (2006).
  • Li ZY, Tang T, U-King-Im J, Graves M, Sutcliffe M, Gillard JH. Assessment of carotid plaque vulnerability using structural and geometrical determinants. Circ. J.72(7), 1092–1099 (2008).
  • Holzapfel GA, Sommer G, Gasser CT, Regitnig P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol.289(5), H2048–H2058 (2005).
  • Gasser TC, Ogden RW, Holzapfel GA. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface3(6), 15–35 (2006).
  • Bathe KJ. Finite Element Procedures. Prentice Hall, NJ, USA (1996).
  • Lusby RJ, Ferrell LD, Ehrenfeld WK, Stoney RJ, Wylie EJ. Carotid plaque hemorrhage. Its role in production of cerebral ischemia. Arch. Surg.117(11), 1479–1488 (1982).
  • Lee RT. Atherosclerotic lesion mechanics versus biology. Z. Kardiol.89(Suppl. 2), 80–84 (2000).
  • Yuan C, Mitsumori LM, Beach KW, Maravilla KR. Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology221(2), 285–299 (2001).
  • Yuan C, Mitsumori LM, Ferguson MS et al.In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation104(17), 2051–2056 (2001).
  • Yuan C, Kerwin WS. MRI of atherosclerosis. J. Magn. Reson. Imaging19(6), 710–719 (2004).
  • Sadat U, Li ZY, Graves MJ, Tang TY, Gillard JH. Noninvasive imaging of atheromatous carotid plaques. Nat. Clin. Pract. Cardiovasc. Med.6(3), 200–209 (2009).
  • Underhill HR, Hatsukami TS, Fayad ZA, Fuster V, Yuan C. MRI of carotid atherosclerosis: clinical implications and future directions. Nat. Rev. Cardiol.7(3), 165–173 (2010).
  • Saam T, Ferguson MS, Yarnykh VL et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler. Thromb. Vasc. Biol.25(1), 234–239 (2005).
  • Saam T, Hatsukami TS, Yarnykh VL et al. Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic plaque using 1.5T Siemens, Philips, and General Electric scanners. J. Magn. Reson. Imaging26(2), 344–352 (2007).
  • Trivedi RA, U-King-Im J, Graves MJ et al. MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo.Neuroradiology46(9), 738–743 (2004).
  • Saam T, Cai J, Ma L et al. Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging. Radiology240(2), 464–472 (2006).
  • Teng Z, Sadat U, Li Z et al. Arterial luminal curvature and fibrous-cap thickness affect critical stress conditions within atherosclerotic plaque: an in vivo mri-based 2D finite-element study. Ann. Biomed. Eng. DOI: 10.1007/s10439-010-0078-3 (2010) (Epub ahead of print).
  • Yang C, Tang D, Yuan C, Hatsukami TS, Zheng J, Woodard PK. In vivo/ex vivo MRI-based 3D non-Newtonian FSI models for human atherosclerotic plaques compared with fluid/wall-only models. Comput. Model Eng. Sci.19(3), 233–246 (2007).
  • Tang TY, Howarth SP, Li ZY et al. Correlation of carotid atheromatous plaque inflammation with biomechanical stress: utility of USPIO enhanced MR imaging and finite element analysis. Atherosclerosis196(2), 879–887 (2008).
  • Sadat U, Teng Z, Young VE et al. Association between biomechanical structural stresses and morphological characteristics of atherosclerotic carotid plaques and subsequent ischaemic cerebrovascular events – a longitudinal in vivo MRI-based finite-element study. Eur. J. Vasc. Endovasc. Surg. DOI: 10.1016/j.ejvs.2010.07.015 (2010) (Epub ahead of print).
  • Naylor AR. Occam’s razor: intervene early to prevent more strokes! J. Vasc. Surg.48(4), 1053–1059 (2008).
  • Shapiro AH. Stead flow in collapsible tubes. J. Biomech. Eng.99, 126–147 (1977).
  • Pedley TJ. Longitudinal tension variation in collapsible channels: a new mechanism for the breakdown of steady flow. J. Biomech. Eng.114(1), 60–67 (1992).
  • Giddens DP, Zarins CK, Glagov S. The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng.115(4B), 588–594 (1993).
  • Friedman MH. Arteriosclerosis research using vascular flow models: from 2-D branches to compliant replicas. J. Biomech. Eng.115(4B), 595–601 (1993).
  • Tandon PN, Rana UV. A new model for blood flow through an artery with axisymmetric stenosis. Int. J. Biomed. Comput.38(3), 257–267 (1995).
  • Binns RL, Ku DN. Effect of stenosis on wall motion. A possible mechanism of stroke and transient ischemic attack. Arteriosclerosis9(6), 842–847 (1989).
  • Biz S. Flow in collapsible stenoses: an experimental study. M.S. Thesis. Georgia Institute of Technology, GA, USA (1993).
  • Tang D, Chen XK, Yang C, Kobayashi S, Ku DN. Effects of dynamic wall properties on blood flow in stenotic arteries. J. Med. Biomech.15(2), 77 (2000).
  • Tang DL, Yang C, Ku DN. A 3-D thin-wall model with fluid-structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenoses. Comput. Struct.72, 357–377 (1999).
  • Tang D, Yang C, Kobayashi S, Ku DN. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions. J. Biomech. Eng.123(6), 548–557 (2001).
  • Bluestein D, Alemu Y, Avrahami I et al. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J. Biomech.41(5), 1111–1118 (2008).
  • Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation103(8), 1051–1056 (2001).
  • Li ZY, Howarth S, Tang T, Graves M, U-King-Im J, Gillard JH. Does calcium deposition play a role in the stability of atheroma? Location may be the key. Cerebrovasc. Dis.24(5), 452–459 (2007).
  • Tang D, Yang C, Zheng J et al. Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J. Biomech. Eng.127(7), 1185–1194 (2005).
  • Tang D, Yang C, Kobayashi S et al. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J. Biomech. Eng.131(6), 061010 (2009).
  • Kock SA, Nygaard JV, Eldrup N et al. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. J. Biomech.41(8), 1651–1658 (2008).
  • Thrysoe SA, Oikawa M, Yuan C et al. Longitudinal distribution of mechanical stresses in carotid plaques of symptomatic patients. Stroke41(5), 1041–1043 (2010).
  • Baldewsing RA, Schaar JA, de Korte CL, Mastik F, Serruys PW, van der Steen AF. Intravascular ultrasound elastography: a clinician’s tool for assessing vulnerability and material composition of plaques. Stud. Health Technol. Inform.113, 75–96 (2005).
  • Karimi R, Zhu T, Bouma BE, Mofrad MR. Estimation of nonlinear mechanical properties of vascular tissues via elastography. Cardiovasc. Eng.8(4), 191–202 (2008).
  • Masson I, Boutouyrie P, Laurent S, Humphrey JD, Zidi M. Characterization of arterial wall mechanical behavior and stresses from human clinical data. J. Biomech.41(12), 2618–2627 (2008).
  • Chuong CJ, Fung YC. On residual stresses in arteries. J. Biomech. Eng.108(2), 189–192 (1986).
  • Delfino A, Stergiopulos N, Moore JE Jr, Meister JJ. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech.30(8), 777–786 (1997).
  • Alastrue V, Pena E, Martinez MA, Doblare M. Assessing the use of the ‘opening angle method’ to enforce residual stresses in patient-specific arteries. Ann. Biomed. Eng.35(10), 1821–1837 (2007).
  • Taber LA. A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. Eng.120(3), 348–354 (1998).
  • Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res.18(3), 278–292 (1966).
  • Lendon CL, Davies MJ, Richardson PD, Born GV. Testing of small connective tissue specimens for the determination of the mechanical behaviour of atherosclerotic plaques. J. Biomed. Eng.15(1), 27–33 (1993).
  • Holzapfel GA. Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol.238(2), 290–302 (2006).
  • van Andel CJ, Pistecky PV, Borst C. Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann. Thorac. Surg.76(1), 58–64 (2003).
  • Ebenstein DM, Coughlin D, Chapman J, Li C, Pruitt LA. Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J. Biomed. Mater. Res. A91(4), 1028–1037 (2009).
  • Yuan C, Zhao XQ, Hatsukami TS. Quantitative evaluation of carotid atherosclerotic plaques by magnetic resonance imaging. Curr. Atheroscler. Rep.4(5), 351–357 (2002).
  • Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo.Circulation94(5), 932–938 (1996).
  • von Ingersleben G, Schmiedl UP, Hatsukami TS et al. Characterization of atherosclerotic plaques at the carotid bifurcation: correlation of high-resolution MR imaging with histologic analysis – preliminary study. Radiographics17(6), 1417–1423 (1997).
  • Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann. N. Y. Acad. Sci.902, 173–186 (2000).
  • Chu B, Kampschulte A, Ferguson MS et al. Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke35(5), 1079–1084 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.