374
Views
61
CrossRef citations to date
0
Altmetric
Theme: Thrombosis - Special Report

Targeting von Willebrand factor and platelet glycoprotein Ib receptor

, &
Pages 1689-1701 | Published online: 10 Jan 2014

References

  • Lowenberg EC, Meijers JC, Levi M. Platelet–vessel wall interaction in health and disease. Neth. J. Med.68(6), 242–251 (2010).
  • Blann A. Von Willebrand factor and the endothelium in vascular disease. Br. J. Biomed. Sci.50(2), 125–134 (1993).
  • Ruggeri ZM, Ware J. Von Willebrand factor. FASEB J.7(2), 308–316 (1993).
  • Spiel AO, Gilbert JC, Jilma B. Von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation117(11), 1449–1459 (2008).
  • Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem.67, 395–424 (1998).
  • Hoylaerts MF. Platelet–vessel wall interactions in thrombosis and restenosis role of von Willebrand factor. Verh. K Acad. Geneeskd. Belg.59(3), 161–183 (1997).
  • Pareti FI, Fujimura Y, Dent JA, Holland LZ, Zimmerman TS, Ruggeri ZM. Isolation and characterization of a collagen binding domain in human von Willebrand factor. J. Biol. Chem.261(32), 15310–15315 (1986).
  • Siedlecki CA, Lestini BJ, Kottke-Marchant KK et al. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood88(8), 2939–2950 (1996).
  • Matsushita T, Sadler JE. Identification of amino acid residues essential for von Willebrand factor binding to platelet glycoprotein Ib. Charged-to-alanine scanning mutagenesis of the A1 domain of human von Willebrand factor. J. Biol. Chem.270(22), 13406–13414 (1995).
  • Reininger AJ, Heijnen HF, Schumann H, Specht HM, Schramm W, Ruggeri ZM. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood107(9), 3537–3545 (2006).
  • Nichols WL, Hultin MB, James AH et al. von Willebrand disease (vWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia14(2), 171–232 (2008).
  • Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell84(2), 289–297 (1996).
  • Fredrickson BJ, Dong JF, McIntire LV, Lopez JA. Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib–IX–V complex. Blood92(10), 3684–3693 (1998).
  • Pendu R, Christophe OD, Denis CV. Mouse models of von Willebrand disease. J. Thromb. Haemost.7(Suppl. 1) 61–64 (2009).
  • Denis CV, Wagner DD. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler. Thromb. Vasc. Biol.27(4), 728–739 (2007).
  • Denis CV, Marx I, Badirou I, Pendu R, Christophe O. Mouse models to study von Willebrand factor structure-function relationships in vivo. Hamostaseologie29(1), 17–18, 20 (2009).
  • Marx I, Christophe OD, Lenting PJ et al. Altered thrombus formation in von Willebrand factor-deficient mice expressing von Willebrand factor variants with defective binding to collagen or GPIIbIIIa. Blood112(3), 603–609 (2008).
  • Vlot AJ, Koppelman SJ, van den Berg MH, Bouma BN, Sixma JJ. The affinity and stoichiometry of binding of human factor VIII to von Willebrand factor. Blood85(11), 3150–3157 (1995).
  • Jaffe EA, Hoyer LW, Nachman RL. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc. Natl Acad. Sci. USA71(5), 1906–1909 (1974).
  • Vischer UM, Wagner DD. Von Willebrand factor proteolytic processing and multimerization precede the formation of Weibel–Palade bodies. Blood83(12), 3536–3544 (1994).
  • Weibel ER, Palade GE. New cytoplasmic components in arterial endothelia. J. Cell Biol.23, 101–112 (1964).
  • Pearson JD. Normal endothelial cell function. Lupus9(3), 183–188 (2000).
  • Bowie EJ, Solberg LA Jr, Fass DN et al. Transplantation of normal bone marrow into a pig with severe von Willebrand’s disease. J. Clin. Invest.78(1), 26–30 (1986).
  • Mannucci PM. Platelet von Willebrand factor in inherited and acquired bleeding disorders. Proc. Natl Acad. Sci. USA92(7), 2428–2432 (1995).
  • Nachman R, Levine R, Jaffe EA. Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes. J. Clin. Invest.60(4), 914–921 (1977).
  • Ware RE, Parker RI, McKeown LP, Graham ML. A human chimera for von Willebrand disease following bone marrow transplantation. Am. J. Pediatr. Hematol. Oncol.15(3), 338–342 (1993).
  • Brouland JP, Egan T, Roussi J et al.In vivo regulation of von willebrand factor synthesis: von Willebrand factor production in endothelial cells after lung transplantation between normal pigs and von Willebrand factor-deficient pigs. Arterioscler. Thromb. Vasc. Biol.19(12), 3055–3062 (1999).
  • Pinsky DJ, Naka Y, Liao H et al. Hypoxia-induced exocytosis of endothelial cell Weibel–Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J. Clin. Invest.97(2), 493–500 (1996).
  • Paleolog EM, Crossman DC, McVey JH, Pearson JD. Differential regulation by cytokines of constitutive and stimulated secretion of von Willebrand factor from endothelial cells. Blood75(3), 688–695 (1990).
  • Levine JD, Harlan JM, Harker LA, Joseph ML, Counts RB. Thrombin-mediated release of factor VIII antigen from human umbilical vein endothelial cells in culture. Blood60(2), 531–534 (1982).
  • Chignard M, Balloy V, Renesto P. Leucocyte elastase-mediated release of von Willebrand factor from cultured endothelial cells. Eur. Respir. J.6(6), 791–796 (1993).
  • Jilma B, Pernerstorfer T, Dirnberger E et al. Effects of histamine and nitric oxide synthase inhibition on plasma levels of von Willebrand factor antigen. J. Lab. Clin. Med.131(2), 151–156 (1998).
  • Derhaschnig U, Schweeger-Exeli I, Marsik C et al. Effects of aspirin and NO–aspirin (NCX-4016) on platelet function and coagulation in human endotoxemia. Platelets21(5), 320–328 (2010).
  • Jilma B, Dirnberger E, Eichler HG et al. Partial blockade of nitric oxide synthase blunts the exercise-induced increase of von Willebrand factor antigen and of factor VIII in man. Thromb. Haemost.78(4), 1268–1271 (1997).
  • Rickles FR, Hoyer LW, Rick ME, Ahr DJ. The effects of epinephrine infusion in patients with von Willebrand’s disease. J. Clin. Invest.57(6), 1618–1625 (1976).
  • Mannucci PM, Ruggeri ZM, Pareti FI, Capitanio A. 1-Deamino-8-D-arginine vasopressin: a new pharmacological approach to the management of haemophilia and von Willebrands’ diseases. Lancet1(8017), 869–872 (1977).
  • Richardson M, Tinlin S, De Reske M, Webster S, Senis Y, Giles AR. Morphological alterations in endothelial cells associated with the release of von Willebrand factor after thrombin generation in vivo. Arterioscler. Thromb.14(6), 990–999 (1994).
  • Shim K, Anderson PJ, Tuley EA, Wiswall E, Sadler JE. Platelet–vWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood111(2), 651–657 (2008).
  • Lenting PJ, Pegon JN, Groot E, de Groot PG. Regulation of von Willebrand factor-platelet interactions. Thromb. Haemost.104(3) (2010).
  • Skipwith CG, Cao W, Zheng XL. Factor VIII and platelets synergistically accelerate cleavage of von Willebrand factor by ADAMTS13 under fluid shear stress. J. Biol. Chem.285(37), 28596–28603 (2010).
  • Cao W, Krishnaswamy S, Camire RM, Lenting PJ, Zheng XL. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13. Proc. Natl Acad. Sci. USA105(21), 7416–7421 (2008).
  • Remuzzi G, Galbusera M, Noris M et al. von Willebrand factor cleaving protease (ADAMTS13) is deficient in recurrent and familial thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Blood100(3), 778–785 (2002).
  • Mulvihill N, Foley JB, Ghaisas N, Murphy R, Crean P, Walsh M. Early temporal expression of soluble cellular adhesion molecules in patients with unstable angina and subendocardial myocardial infarction. Am. J. Cardiol.83(8), 1265–1267, A9 (1999).
  • Thompson SG, Kienast J, Pyke SD, Haverkate F, van de Loo JC. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N. Engl. J. Med.332(10), 635–641 (1995).
  • Back LD, Radbill JR, Crawford DW. Analysis of pulsatile, viscous blood flow through diseased coronary arteries of man. J. Biomech.10(5–6), 339–353 (1977).
  • Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood88(5), 1525–1541 (1996).
  • Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood109(2), 566–576 (2007).
  • Mazzucato M, Cozzi MR, Pradella P, Ruggeri ZM, De Marco L. Distinct roles of ADP receptors in von Willebrand factor-mediated platelet signaling and activation under high flow. Blood104(10), 3221–3227 (2004).
  • Gilbert JC, DeFeo-Fraulini T, Hutabarat RM et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation116(23), 2678–2686 (2007).
  • Vanhoorelbeke K, Ulrichts H, Schoolmeester A, Deckmyn H. Inhibition of platelet adhesion to collagen as a new target for antithrombotic drugs. Curr. Drug Targets Cardiovasc. Haematol. Disord.3(2), 125–140 (2003).
  • Holmberg L, Nilsson IM. Von Willebrand’s disease. Eur. J. Haematol.48(3), 127–141 (1992).
  • Chauhan AK, Kisucka J, Lamb CB, Bergmeier W, Wagner DD. Von Willebrand factor and factor VIII are independently required to form stable occlusive thrombi in injured veins. Blood109(6), 2424–2429 (2007).
  • Takahashi M, Yamashita A, Moriguchi-Goto S et al. Critical role of von Willebrand factor and platelet interaction in venous thromboembolism. Histol. Histopathol.24(11), 1391–1398 (2009).
  • Montalescot G, Philippe F, Ankri A et al. Early increase of von Willebrand factor predicts adverse outcome in unstable coronary artery disease: beneficial effects of enoxaparin. French Investigators of the ESSENCE Trial. Circulation98(4), 294–299 (1998).
  • Ray KK, Morrow DA, Gibson CM, Murphy S, Antman EM, Braunwald E. Predictors of the rise in vWF after ST elevation myocardial infarction: implications for treatment strategies and clinical outcome: an ENTIRE-TIMI 23 substudy. Eur. Heart J.26(5), 440–446 (2005).
  • Collet JP, Montalescot G, Vicaut E et al. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality. Circulation108(4), 391–394 (2003).
  • Fuchs I, Frossard M, Spiel A, Riedmuller E, Laggner AN, Jilma B. Platelet function in patients with acute coronary syndrome (ACS) predicts recurrent ACS. J. Thromb. Haemost.4(12), 2547–2552 (2006).
  • Jansson JH, Nilsson TK, Johnson O. Von Willebrand factor in plasma: a novel risk factor for recurrent myocardial infarction and death. Br. Heart J.66(5), 351–355 (1991).
  • Bongers TN, de Bruijne EL, Dippel DW et al. Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients. Atherosclerosis207(1), 250–254 (2009).
  • Crawley JT, Lane DA, Woodward M, Rumley A, Lowe GD. Evidence that high von Willebrand factor and low ADAMTS-13 levels independently increase the risk of a non-fatal heart attack. J. Thromb. Haemost.6(4), 583–588 (2008).
  • Kaikita K, Soejima K, Matsukawa M, Nakagaki T, Ogawa H. Reduced von Willebrand factor-cleaving protease (ADAMTS13) activity in acute myocardial infarction. J. Thromb. Haemost.4(11), 2490–2493 (2006).
  • Chion CK, Doggen CJ, Crawley JT, Lane DA, Rosendaal FR. ADAMTS13 and von Willebrand factor and the risk of myocardial infarction in men. Blood109(5), 1998–2000 (2007).
  • Sadler JE, Budde U, Eikenboom JC et al. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J. Thromb. Haemost.4(10), 2103–2114 (2006).
  • Lillicrap D. Von Willebrand disease – phenotype versus genotype: deficiency versus disease. Thromb. Res.120(Suppl. 1), S11–S16 (2007).
  • Federici AB. Classification of inherited von Willebrand disease and implications in clinical practice. Thromb. Res.124(Suppl. 1), S2–S6 (2009).
  • Yago T, Lou J, Wu T et al. Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest.118(9), 3195–3207 (2008).
  • Rayes J, Hollestelle MJ, Legendre P et al. Mutation and ADAMTS13-dependent modulation of disease severity in a mouse model for von Willebrand disease type 2B. Blood115(23), 4870–4877 (2010).
  • Rayes J, Hommais A, Legendre P et al. Effect of von Willebrand disease type 2B and type 2M mutations on the susceptibility of von Willebrand factor to ADAMTS-13. J. Thromb. Haemost.5(2), 321–328 (2007).
  • Jilma B, Paulinska P, Jilma-Stohlawetz P, Gilbert JC, Hutabarat R, Knobl P. A randomised pilot trial of the anti-von Willebrand factor aptamer ARC1779 in patients with type 2b von Willebrand disease. Thromb. Haemost.104 (2010).
  • Casonato A, Steffan A, Pontara E et al. Post-DDAVP thrombocytopenia in type 2B von Willebrand disease is not associated with platelet consumption: failure to demonstrate glycocalicin increase or platelet activation. Thromb. Haemost.81(2), 224–228 (1999).
  • Favaloro EJ. Phenotypic identification of platelet-type von Willebrand disease and its discrimination from type 2B von Willebrand disease: a question of 2B or not 2B? A story of nonidentical twins? Or two sides of a multidenominational or multifaceted primary-hemostasis coin? Semin. Thromb. Hemost.34(1), 113–127 (2008).
  • Hillery CA, Mancuso DJ, Evan Sadler J et al. Type 2M von Willebrand disease: F606I and I662F mutations in the glycoprotein Ib binding domain selectively impair ristocetin- but not botrocetin-mediated binding of von Willebrand factor to platelets. Blood91(5), 1572–1581 (1998).
  • Mancuso DJ, Kroner PA, Christopherson PA, Vokac EA, Gill JC, Montgomery RR. Type 2M:Milwaukee-1 von Willebrand disease: an in-frame deletion in the Cys509–Cys695 loop of the von Willebrand factor A1 domain causes deficient binding of von Willebrand factor to platelets. Blood88(7), 2559–2568 (1996).
  • Rabinowitz I, Tuley EA, Mancuso DJ et al. von Willebrand disease type B: a missense mutation selectively abolishes ristocetin-induced von Willebrand factor binding to platelet glycoprotein Ib. Proc. Natl Acad. Sci. USA89(20), 9846–9849 (1992).
  • Ribba AS, Loisel I, Lavergne JM et al. Ser968Thr mutation within the A3 domain of von Willebrand factor (vWF) in two related patients leads to a defective binding of vWF to collagen. Thromb. Haemost.86(3), 848–854 (2001).
  • Sadler JE, Matsushita T, Dong Z, Tuley EA, Westfield LA. Molecular mechanism and classification of von Willebrand disease. Thromb. Haemost.74(1), 161–166 (1995).
  • Aledort LM. Treatment of von Willebrand’s disease. Mayo Clin. Proc.66(8), 841–846 (1991).
  • Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard–Soulier syndrome. Blood91(12), 4397–4418 (1998).
  • Ware J, Russell S, Ruggeri ZM. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc. Natl Acad. Sci. USA97(6), 2803–2808 (2000).
  • Bukowski RM. Thrombotic thrombocytopenic purpura: a review. Prog. Hemost. Thromb.6:287–337 (1982).
  • Moake JL, McPherson PD. Abnormalities of von Willebrand factor multimers in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. Am. J. Med.87(3N), 9N–15N (1989).
  • Chung DW, Fujikawa K. Processing of von Willebrand factor by ADAMTS-13. Biochemistry41(37), 11065–11070 (2002).
  • Tasneem S, Adam F, Minullina I et al. Platelet adhesion to multimerin 1 in vitro: influences of platelet membrane receptors, von Willebrand factor and shear. J. Thromb. Haemost.7(4), 685–692 (2009).
  • Levy GG, Nichols WC, Lian EC et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature413(6855), 488–494 (2001).
  • Ruggenenti P, Noris M, Remuzzi G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int.60(3), 831–846 (2001).
  • Benke S, Moltzan C. Co-existence of heparin-induced thrombocytopenia and thrombotic thrombocytopenic purpura in a postoperative cardiac surgery patient. Am. J. Hematol.80(4), 288–291 (2005).
  • Boctor FN, Prichard JW. Kidney involvement in thrombotic thrombocytopenic purpura and malignant hypertension. Transfusion49(9), 1783–1784 (2009).
  • Hughes C, McEwan JR, Longair I et al. Cardiac involvement in acute thrombotic thrombocytopenic purpura: association with troponin T and IgG antibodies to ADAMTS 13. J. Thromb. Haemost.7(4), 529–536 (2009).
  • Benz K, Amann K. Thrombotic microangiopathy: new insights. Curr. Opin. Nephrol. Hypertens.19(3), 242–247 (2010).
  • Scott EA, Puca KE, Pietz BC, Duchateau BK, Friedman KD. Comparison and stability of ADAMTS13 activity in therapeutic plasma products. Transfusion47(1), 120–125 (2007).
  • Peyvandi F. The role of ADAMTS13 in the new pathogenesis of TTP. Hematology10(Suppl. 1), 47–48 (2005).
  • Bentley MJ, Lehman CM, Blaylock RC, Wilson AR, Rodgers GM. The utility of patient characteristics in predicting severe ADAMTS13 deficiency and response to plasma exchange. Transfusion50(8), 1654–1664 (2010).
  • Hovinga JA, Vesely SK, Terrell DR, Lammle B, George JN. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood115(8), 1500–1511 (2010).
  • Zheng XL, Kaufman RM, Goodnough LT, Sadler JE. Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura. Blood103(11), 4043–4049 (2004).
  • Sadler JE. Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood112(1), 11–18 (2008).
  • Antoine G, Zimmermann K, Plaimauer B et al. ADAMTS13 gene defects in two brothers with constitutional thrombotic thrombocytopenic purpura and normalization of von Willebrand factor-cleaving protease activity by recombinant human ADAMTS13. Br. J. Haematol.120(5), 821–824 (2003).
  • Chauhan AK, Motto DG, Lamb CB et al. Systemic antithrombotic effects of ADAMTS13. J. Exp. Med.203(3), 767–776 (2006).
  • Mayr FB, Knobl P, Jilma B et al. The aptamer ARC1779 blocks von Willebrand factor-dependent platelet function in patients with thrombotic thrombocytopenic purpura ex vivo. Transfusion50(5), 1079–1087 (2010).
  • Jilma B, Jilma P, Paulinska P et al. Proof of concept for the anti von Willebrand factor aptamer in patients with relapsing thrombotic thrombocytopenic purpura (TTP). Blood112(11), 798–799 (2008).
  • Spiel AO, Mayr FB, Ladani N et al. The aptamer ARC1779 is a potent and specific inhibitor of von Willebrand factor mediated ex vivo platelet function in acute myocardial infarction. Platelets20(5), 334–340 (2009).
  • Spiel AO, Siller-Matula J, Firbas C, Leitner JM, Russmueller G, Jilma B. Single dose granulocyte colony-stimulating factor markedly enhances shear-dependent platelet function in humans. Platelets21(6), 464–469 (2010).
  • Coller BS, Gralnick HR. Studies on the mechanism of ristocetin-induced platelet agglutination. Effects of structural modification of ristocetin and vancomycin. J. Clin. Invest.60(2), 302–312 (1977).
  • Matsui T, Hamako J. Structure and function of snake venom toxins interacting with human von Willebrand factor. Toxicon45(8), 1075–1087 (2005).
  • Jilma B. Platelet function analyzer (PFA-100): a tool to quantify congenital or acquired platelet dysfunction. J. Lab. Clin. Med.138(3), 152–163 (2001).
  • Frossard M, Fuchs I, Leitner JM et al. Platelet function predicts myocardial damage in patients with acute myocardial infarction. Circulation110(11), 1392–1397 (2004).
  • Marcucci R, Paniccia R, Antonucci E et al. Residual platelet reactivity is an independent predictor of myocardial injury in acute myocardial infarction patients on antiaggregant therapy. Thromb. Haemost.98(4), 844–851 (2007).
  • Jilma-Stohlawetz P, Horvath M, Eichelberger B, Koren D, Jilma B, Panzer S. Platelet function under high-shear conditions from platelet concentrates. Transfusion48(1), 129–135 (2008).
  • Panzer S, Eichelberger B, Koren D, Kaufmann K, Male C. Monitoring survival and function of transfused platelets in Bernard–Soulier syndrome by flow cytometry and a cone and plate(let) analyzer (Impact-R). Transfusion47(1), 103–106 (2007).
  • Kalb ML, Potura L, Scharbert G, Kozek-Langenecker SA. The effect of ex vivo anticoagulants on whole blood platelet aggregation. Platelets20(1), 7–11 (2009).
  • Toth O, Calatzis A, Penz S, Losonczy H, Siess W. Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb. Haemost.96(6), 781–788 (2006).
  • Penz SM, Reininger AJ, Toth O, Deckmyn H, Brandl R, Siess W. Glycoprotein Ibα inhibition and ADP receptor antagonists, but not aspirin, reduce platelet thrombus formation in flowing blood exposed to atherosclerotic plaques. Thromb. Haemost.97(3), 435–443 (2007).
  • Eshtehardi P, Windecker S, Cook S et al. Dual low response to acetylsalicylic acid and clopidogrel is associated with myonecrosis and stent thrombosis after coronary stent implantation. Am. Heart J.159(5), 891–898.e1 (2010).
  • Sibbing D, Morath T, Braun S et al. Clopidogrel response status assessed with Multiplate point-of-care analysis and the incidence and timing of stent thrombosis over six months following coronary stenting. Thromb. Haemost.103(1), 151–159 (2010).
  • Siller-Matula JM, Christ G, Lang IM, Delle-Karth G, Huber K, Jilma B. Multiple electrode aggregometry predicts stent thrombosis better than the vasodilator-stimulated phosphoprotein phosphorylation assay. J. Thromb. Haemost.8(2), 351–359 (2010).
  • Wuster C, Steger G, Schmelzle A, Gottswinter J, Minne HW, Ziegler R. Increased incidence of euthyroid and hyperthyroid goiters independently of thyrotropin in patients with acromegaly. Horm. Metab. Res.23(3), 131–134 (1991).
  • Siller-Matula JM, Krumphuber J, Jilma B. Pharmacokinetic, pharmacodynamic and clinical profile of novel antiplatelet drugs targeting vascular diseases. Br. J. Pharmacol.159(3), 502–517 (2010).
  • Kageyama S, Yamamoto H, Nakazawa H et al. Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkeys. Arterioscler. Thromb. Vasc. Biol.22(1), 187–192 (2002).
  • Bouchard PR, Hutabarat RM, Thompson KM. Discovery and development of therapeutic aptamers. Annu. Rev. Pharmacol. Toxicol.50, 237–257 (2010).
  • Paulinska P, Spiel A, Jilma B. Role of von Willebrand factor in vascular disease. Hamostaseologie29(1), 32–38 (2009).
  • Diener JL, Daniel Lagasse HA, Duerschmied D et al. Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J. Thromb. Haemost.7(7), 1155–1162 (2009).
  • Jilma B, Jilma P, Gilbert JC et al. Safety, pharmacokinetics and pharmacodynamics of the anti von Willebrand factor aptamer ARC1779 in patients with acute thrombotic thrombocytopenic purpura (TTP). J. Thromb. Haemost.7(Suppl. 1) (2009) (Abstract AS-WE-014).
  • Knobl P, Jilma B, Gilbert JC, Hutabarat RM, Wagner PG, Jilma-Stohlawetz P. Anti-von Willebrand factor aptamer ARC1779 for refractory thrombotic thrombocytopenic purpura. Transfusion49(10), 2181–2185 (2009).
  • Ulrichts H, Schoolmeester A, Hoefman S et al. Anti-thrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with current marketed antiplatelet drugs. J. Thromb. Haemost. Suppl. (2009) (Abstract AS-Th-024).
  • Holz J, Bartunek J, Barbato E, Vercruysse K, Pullan S, Heyndrickxs G. ALX-0081 a novel anti-thrombotic: first results of a multiple dose Phase I study in patients with stable angina undergoing PCI. J. Thromb. Haemost. Suppl. (2009) (Abstract PP-WE-416).
  • Abd-Elaziz K, Kamphuisen PW, Lyssesns C et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of anti-vWF nanobody ALX-0681 after single and multiple subcutaneous administrations to healthy volunteers. Presented at: 51st ASH Annual Meeting and Exposition. LA, USA, 5–8 December 2009 (Abstract).
  • Vanhoorelbeke K, Depraetere H, Romijn RA, Huizinga EG, De Maeyer M, Deckmyn H. A consensus tetrapeptide selected by phage display adopts the conformation of a dominant discontinuous epitope of a monoclonal anti-vWF antibody that inhibits the von Willebrand factor-collagen interaction. J. Biol. Chem.278(39), 37815–37821 (2003).
  • Wu D, Meiring M, Kotze HF, Deckmyn H, Cauwenberghs N. Inhibition of platelet glycoprotein Ib, glycoprotein IIb/IIIa, or both by monoclonal antibodies prevents arterial thrombosis in baboons. Arterioscler. Thromb. Vasc. Biol.22(2), 323–328 (2002).
  • De Meyer SF, Staelens S, Badenhorst PN et al. Coronary artery in-stent stenosis persists despite inhibition of the von Willebrand factor–collagen interaction in baboons. Thromb. Haemost.98(6), 1343–1349 (2007).
  • Huizinga EG, Tsuji S, Romijn RA et al. Structures of glycoprotein Ibα and its complex with von Willebrand factor A1 domain. Science297(5584), 1176–1179 (2002).
  • Uff S, Clemetson JM, Harrison T, Clemetson KJ, Emsley J. Crystal structure of the platelet glycoprotein Ib(α) N-terminal domain reveals an unmasking mechanism for receptor activation. J. Biol. Chem.277(38), 35657–35663 (2002).
  • Cauwenberghs N, Vanhoorelbeke K, Vauterin S et al. Epitope mapping of inhibitory antibodies against platelet glycoprotein Ibα reveals interaction between the leucine-rich repeat N-terminal and C-terminal flanking domains of glycoprotein Iba. Blood98(3), 652–660 (2001).
  • Fontayne A, Vanhoorelbeke K, Pareyn I et al. Rational humanization of the powerful antithrombotic anti-GPIbα antibody: 6B4. Thromb. Haemost.96(5), 671–684 (2006).
  • Wu D, Vanhoorelbeke K, Cauwenberghs N et al. Inhibition of the von Willebrand (vWF)-collagen interaction by an antihuman vWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood99(10), 3623–3628 (2002).
  • Hennan JK, Swillo RE, Morgan GA et al. Pharmacologic inhibition of platelet vWF–GPIb α interaction prevents coronary artery thrombosis. Thromb. Haemost.95(3), 469–475 (2006).
  • Wadanoli M, Sako D, Shaw GD et al. The von Willebrand factor antagonist (GPG-290) prevents coronary thrombosis without prolongation of bleeding time. Thromb. Haemost.98(2), 397–405 (2007).
  • Yang J, Ji S, Dong N, Zhao Y, Ruan C. Engineering and characterization of a chimeric anti-platelet glycoprotein Ibα monoclonal antibody and preparation of its Fab fragment. Hybridoma (Larchmt)29(2), 125–132 (2010).
  • Zhao BQ, Chauhan AK, Canault M et al. von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood114(15), 3329–3334 (2009).
  • Kleinschnitz C, De Meyer SF, Schwarz T et al. Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood113(15), 3600–3603 (2009).
  • Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD. ADAMTS13: a new link between thrombosis and inflammation. J. Exp. Med.205(9), 2065–2074 (2008).
  • Pendu R, Terraube V, Christophe OD et al. P-selectin glycoprotein ligand 1 and β2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood108(12), 3746–3752 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.