188
Views
45
CrossRef citations to date
0
Altmetric
Theme: Thrombosis - Review

Angiotensin II, tissue factor and the thrombotic paradox of hypertension

, , &
Pages 1723-1729 | Published online: 10 Jan 2014

References

  • Lip GY. Hypertension, platelets, and the endothelium. The ‘thrombotic paradox’ of hypertension (or ‘Birmingham paradox’) revisited. Hypertension41, 199–200 (2003).
  • Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler. Thromb. Vasc. Biol.27, 1687–1693 (2007).
  • Laragh JH, Sealey JE. The renin–angiotensin–aldosterone system in hypertensive disorders: a key to two forms of arteriolar vasoconstriction and a possible clue to risk of vascular injury (heart attack and stroke) and prognosis. In: Hypertension. Pathophysiology, Diagnosis and Management. Laragh JH, Brenner BM (Eds). Raven Press Ltd, NY, USA, 1329–1348 (1990).
  • Celi A, Lorenzet R, Furie BC, Furie B. Microparticles and a P-selectin-mediated pathway of blood coagulation. Dis. Markers20, 347–352 (2004).
  • Halvorsen H, Olsen JO, Osterud B. Granulocytes enhance LPS-induced tissue factor activity in monocytes via an interaction with platelets. J. Leukoc. Biol.54, 275–282 (1993).
  • Camera M, Frigerio M, Toschi V et al. Platelet activation induces cell-surface immunoreactive tissue factor expression, which is modulated differently by antiplatelet drugs. Arterioscler. Thromb. Vasc. Biol.23, 1690–1696 (2003).
  • Maugeri N, Brambilla M, Camera M et al. Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J. Thromb. Haemost.4, 1323–1330 (2006).
  • Egorina EM, Sovershaev MA, Olsen JO, Osterud B. Granulocytes do not express but acquire monocyte-derived tissue factor in whole blood. Evidence for a direct transfer. Blood111, 1208–1216 (2008).
  • Lechner D, Weltermann A. Circulating tissue factor-exposing microparticles. Thromb. Res.122(Suppl. 1), S47–S54 (2008).
  • Braunersreuther V, Mach F, Steffens S. The specific role of chemokines in atherosclerosis. Thromb. Haemost.97, 714–721 (2007).
  • Steffel J, Luscher TF, Tanner FC. Tissue factor in cardiovascular diseases. molecular mechanisms and clinical implications. Circulation113, 722–731 (2006).
  • Marmur JD, Rossikhina M, Guha A et al. Tissue factor is rapidly induced in arterial smooth muscle after balloon injury. J. Clin. Invest.91, 2253–2259 (1993).
  • Wu J, Stevenson MJ, Brown JM, Grunz EA, Strawn TL, Fay WP. C-reactive protein enhances tissue factor expression by vascular smooth muscle cells. mechanisms and in vivo significance. Arterioscler. Thromb. Vasc. Biol.28, 698–704 (2008).
  • Levi M, van der Poll T, Büller HR. Bidirectional relation between inflammation and coagulation. Circulation109, 2698–2704 (2004).
  • Lehoux S, Tedgui A. Signal transduction of mechanical stresses in the vascular wall. Hypertension32, 338–345 (1998).
  • Ungvari Z, Wolin MS, Csiszar A. Mechanosensitive production of reactive oxygen species in endothelial and smooth muscle cells: role in microvascular remodeling? Antioxid. Redox Signal.8, 1121–1129 (2006).
  • Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol. Rev.89, 481–534 (2009).
  • Nestoridi E, Kushak RI, Tsukurov O, Grabowski EF, Ingelfinger JR. Role of the renin angiotensin system in TNF-α and Shiga-toxin-induced tissue factor expression. Pediatr. Nephrol.23, 221–231 (2008).
  • Shang MH, Yuan WJ, Zhang SJ, Fan Y, Zhang Z. Intrarenal activation of renin angiotensin system in the development of cyclosporine A induced chronic nephrotoxicity. Chin. Med. J.121, 983–988 (2008).
  • Griendling KK, Ushio-Fukai M, Lassègue B, Alexander RW. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension29(Pt 2), 366–373 (1997).
  • Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler. Thromb. Vasc. Biol.20, 2175–2183 (2000).
  • Baylis C, Mitruka B, Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J. Clin. Invest.90, 278–281 (1992).
  • Corseaux D, Ollivier V, Fontaine V et al. Hemostasis imbalance in experimental hypertension. Mol. Med.8, 169–178 (2002).
  • Müller DN, Mervaala EM, Dechend R et al. Angiotensin II (AT(1)) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am. J. Pathol.157, 111–122 (2000).
  • Muller DN, Mervaala EM, Schmidt F et al. Effect of bosentan on NF-κB, inflammation, and tissue factor in angiotensin II-induced end-organ damage. Hypertension36, 282–290 (2000).
  • Felmeden DC, Spencer CG, Chung NA et al. Relation of thrombogenesis in systemic hypertension to angiogenesis and endothelial damage/dysfunction (a substudy of the Anglo–Scandinavian Cardiac Outcomes Trial [ASCOT]). Am. J. Cardiol.92, 400–405 (2003).
  • Parhami-Seren B, Butenas S, Krudysz-Amblo J, Mann KG. Immunologic quantitation of tissue factors. J. Thromb. Haemost.4, 1747–1755 (2006).
  • Sardo MA, Campo S, Mandraffino G et al. Tissue factor and monocyte chemoattractant protein-1 expression in hypertensive individuals with normal or increased carotid intima–media wall thickness. Clin. Chem.54, 814–823 (2008).
  • Boulanger CM. Microparticles, vascular function and hypertension. Curr. Opin. Nephrol. Hypertens.19, 177–180 (2010).
  • Preston RA, Jy W, Jimenez JJ et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension41, 211–217 (2003).
  • Huang PH, Huang SS, Chen YH et al. Increased circulating CD31+/annexin V+ apoptotic microparticles and decreased circulating endothelial progenitor cell levels in hypertensive patients with microalbuminuria. J. Hypertens.28, 1655–1665 (2010).
  • Helal O, Defoort C, Robert S et al. Increased levels of microparticles originating from endothelial cells, platelets and erythrocytes in subjects with metabolic syndrome. Relationship with oxidative stress. Nutr. Metab. Cardiovasc. Dis. DOI: 10.1016/j.numecd.2010.01.004 (2010) (Epub ahead of print).
  • Combes V, Simon AC, Grau GE et al.In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J. Clin. Invest.104, 93–102 (1999).
  • Giannotti G, Doerries C, Mocharla PS et al. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension. Relation to endothelial dysfunction. Hypertension55, 1389–1397 (2010).
  • Meade TW, Mellows 5, Brozovic M et al. Haemostatic function and ischemic heart disease: principal results of the Northwick Park Heart Study. Lancet2, 533–537 (1986).
  • Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin–angiotensin systems. Physiol. Rev.86, 747–803 (2006).
  • Mackman N. Regulation of the tissue factor gene. Thromb. Haemost.78, 747–754 (1997).
  • Moynagh PN. The NF-κB pathway. J. Cell. Sci.118, 4589–4592 (2005).
  • He M, He X, Xie Q, Chen F, He S. Angiotensin II induces the expression of tissue factor and its mechanism in human monocytes. Thromb. Res.117, 579–590 (2006).
  • Nishimura H, Tsuji H, Masuda H et al. Angiotensin II increases plasminogen activator inhibitor-1 and tissue factor mRNA expression without changing that of tissue type plasminogen activator or tissue factor pathway inhibitor in cultured rat aortic endothelial cells. Thromb. Haemost.77, 1189–1195 (1997).
  • Taubman MB, Marmur JD, Rosenfield CL, Guha A, Nichtberger S, Nemerson Y. Agonist-mediated tissue factor expression in cultured vascular smooth muscle cells. Role of Ca2+ mobilization and protein kinase C activation. J. Clin. Invest.91, 547–552 (1993).
  • Napoleone E, Di Santo A, Camera M, Tremoli E, Lorenzet R. Angiotensin-converting enzyme inhibitors downregulate tissue factor synthesis in monocytes. Circ. Res.86, 139–143 (2000).
  • Maibaum J, Stutz S, Göschke R et al. Structural modification of the P2’ position of 2,7-dialkyl-substituted 5(S)-amino-4(S)-hydroxy-8-phenyl-octanecarboxamides. The discovery of aliskiren, a potent nonpeptide human renin inhibitor active after once daily dosing in marmosets. J. Med. Chem.50, 4832–4844 (2007).
  • Del Fiorentino A, Cianchetti S, Celi A, Pedrinelli R. Aliskiren, a renin inhibitor, downregulates TNF-{α}-induced tissue factor expression in HUVECS. J. Renin Angiotensin Aldosterone Syst. DOI: 10.1177/1470320310379449 (2010) (Epub ahead of print).
  • Nussberger J, Aubert JF, Bouzourene K, Pellegrin M, Hayoz D, Mazzolai L. Renin inhibition by aliskiren prevents atherosclerosis progression: comparison with irbesartan, atenolol, and amlodipine. Hypertension51, 1306–1311 (2008).
  • Ino J, Kojima C, Osaka M, Nitta K, Yoshida M. Dynamic observation of mechanically-injured mouse femoral artery reveals an antiinflammatory effect of renin inhibitor. Arterioscler. Thromb. Vasc. Biol.29, 1858–1863 (2009).
  • Del Fiorentino A, Cianchetti S, Celi A, Dell’Omo G, Pedrinelli R. The effect of angiotensin receptor blockers on C-reactive protein and other circulating inflammatory indices in man. Vasc. Health. Risk. Manag.5, 233–242 (2009).
  • Dechend R, Homuth V, Wallukat G et al. AT(1) receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation101, 2382–2387 (2000).
  • von Lutterotti N, Catanzaro DF, Sealey JE, Laragh JH. Renin is not synthesized by cardiac and extrarenal vascular tissues. A review of experimental evidence. Circulation.89, 458–470 (1994).
  • Pawlinski R, Wang JG, Owens AP 3rd et al. Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood116, 806–814 (2010).
  • Atkinson BT, Jasuja R, Chen V, Nandivada P, Furie B, Furie BC. Laser-induced endothelial cell activation supports fibrin formation. Blood DOI: 10.1182/blood-2010-05-283986 (2010) (Epub ahead of print).
  • Koh KK, Chung WJ, Ahn JY et al. Angiotensin II type 1 receptor blockers reduce tissue factor activity and plasminogen activator inhibitor type-1 antigen in hypertensive patients. A randomized, double-blind, placebo-controlled study. Atherosclerosis177, 155–160 (2004).
  • Berman CL, Yeo EL, Wencel-Drake JD, Furie BC, Ginsberg MH, Furie B. A platelet α granule membrane protein that is associated with the plasma membrane after activation. Characterization and subcellular localization of platelet activation-dependent granule-external membrane protein. J. Clin. Invest.78, 130–137 (1986).
  • Bonfanti R, Furie BC, Furie B, Wagner DD. PADGEM (GMP140) is a component of Weibel–Palade bodies of human endothelial cells. Blood73, 1109–1112 (1989).
  • Larsen E, Celi A, Gilbert GE et al. PADGEM protein. A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell59, 305–312 (1989).
  • Geng JG, Bevilacqua MP, Moore KL et al. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature343, 757–760 (1990).
  • Wagner DD. P-selectin chases a butterfly. J. Clin. Invest.95, 1955–1956 (1995).
  • Celi A, Pellegrini G, Lorenzet R et al. P-selectin induces the expression of tissue factor on monocytes. Proc. Natl Acad. Sci. USA91, 8767–8771 (1994).
  • Blann AD, Nadar S, Lip GY. Pharmacological modulation of platelet function in hypertension. Hypertension42, 1–7 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.