159
Views
8
CrossRef citations to date
0
Altmetric
Theme: Cardiac Imaging - Review

Evaluation of myocardial ischemia and viability by noninvasive cardiac imaging

, , , &
Pages 55-73 | Published online: 10 Jan 2014

References

  • Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation66(6), 1146–1149 (1982).
  • Conti CR. The stunned and hibernating myocardium: a brief review. Clin. Cardiol.14(9), 708–712 (1991).
  • Braunwald E, Rutherford JD. Reversible ischemic left ventricular dysfunction: evidence for the ‘hibernating myocardium’. J. Am. Coll. Cardiol.8(6), 1467–1470 (1986).
  • Kaul S. There may be more to myocardial viability than meets the eye. Circulation92(10), 2790–2793 (1995).
  • Chareonthaitawee P, Gersh BJ, Araoz PA, Gibbons RJ. Revascularization in severe left ventricular dysfunction: the role of viability testing. J. Am. Coll. Cardiol.46(4), 567–574 (2005).
  • Velazquez EJ, Lee KL, Deja MA, Jain A et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med.364(17), 1607–1616 (2011).
  • Bonow RO, Maurer G, Lee KL et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N. Engl. J. Med.364, 1617–1625 (2011).
  • Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J. Am. Coll. Cardiol.39(7), 1151–1158 (2002).
  • Senior R, Kaul S, Lahiri A. Myocardial viability on echocardiography predicts long-term survival after revascularization in patients with ischemic congestive heart failure. J. Am. Coll. Cardiol.33(7), 1848–1854 (1999).
  • Nesto RW, Kowalchuk MD. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expression of ischemia. Am. J. Cardiol.59(7), 23C–30C (1987).
  • Schinkel AFL, Bax JJ, Poldermans D et al. Noninvasive evaluation if ischemic heart disease: myocardial perfusion imaging or stress echocardiography? Eur. Heart J.24(9), 789–800 (2003).
  • Marwick TH, Case C, Vasey C, Allen S, Short L, Thomas JD. Prediction of mortality by exercise echocardiography: a strategy for combination with the Duke treadmill score. Circulation103(21), 2566–2571 (2001).
  • Berman DS, Hachamovitch R, Shaw LJ et al. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: assessment of patients with suspected coronary artery disease. J. Nucl. Med.47(1), 74–82 (2006).
  • Berman DS, Hachamovitch R, Shaw LJ et al. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J. Nucl. Med.47(7), 1107–1118 (2006).
  • Vogel-Claussen J, Rochitte CE, Wu KC et al. Delayed enhancement MR imaging: utility in myocardial assessment. Radio Graphics26(3), 795–810 (2006).
  • Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J. Am. Soc. Echocardiogr.20(9), 1021–1041 (2007).
  • Ryan T, Feigenbaum H. Exercise echocardiography. Am. J. Cardiol.69(20), 82H–89H (1992).
  • Hayes JT, Mahmarian JJ, Cochran AJ et al. Dobutamine thallium-201 tomography for evaluating patients with suspected coronary artery disease unable to undergo exercise or vasodilator pharmacologic stress testing. J. Am. Coll. Cardiol.21(7), 1583–1590 (1993).
  • O’Sullivan CA, Duncan A, Daly C, Li W, Oldershaw P, Henein MY. Dobutamine stress-induced ischemic right ventricular dysfunction and its relation to cardiac output in patients with three-vessel coronary artery disease with angina-like symptoms. Am. J. Cardiol.96(5), 622–627 (2005).
  • Garber AM, Solomon NA. Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. Ann. Intern. Med.130(9), 719–728 (1999).
  • Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA280(10), 913–920 (1998).
  • Moir S, Haluska BA, Jenkins C, Fathi R, Marwick TH. Incremental benefit of myocardial contrast to combined dipyidamole – exercise stress echocardiography for the assessment of coronary artery disease. Circulation110, 1108–1113 (2004).
  • Douglas PS, Bijoy Khandheria B, Raymond F et al. ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress ehocardiography. J. Am. Coll. Cardiol.51(11), 1127–1147 (2008).
  • Brown KA. Do stress echocardiography and myocardial perfusion imaging have the same ability to identify the low-risk patient with known or suspected coronary artery disease? Am. J. Cardiol.81(8), 1050–1053 (1998).
  • La Canna G, Alfieri O, Giubbini R, Gargano M, Ferrari R, Visioli O. Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J. Am. Coll. Cardiol.23(3), 617–626 (1994).
  • Cornel JH, Bax JJ, Elhendy A et al. Biphasic response to dobutamine predicts improvement of global left ventricular function after surgical revascularization in patients with stable coronary artery disease: implication of time course of recovery on diagnostic accuracy. J. Am. Coll. Cardiol.31(5), 1002–1010 (1998).
  • Afridi I, Grayburn PA, Panza JA, Oh JK, Zoghbi WA, Marwick TH. Myocardial viability during dobutamine echocardiography predicts survival in patients with coronary artery disease and severe left ventricular systolic dysfunction. J. Am. Coll. Cardiol.32(4), 921–926 (1998).
  • Nagueh SF, Vaduganathan P, Ali N et al. Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography. J. Am. Coll. Cardiol.29(5), 985–993 (1997).
  • Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr. Probl. Cardiol.26(2), 147–186 (2001).
  • Wei K, Ragosta M, Thorpe J, Coggins M, Moos S, Kaul S. Noninvasive quantification of coronary blood flow reserve in humans using myocardial contrast echocardiography. Circulation103(21), 2560–2565 (2001).
  • Miyasaka Y, Haiden M, Kamihata H, Nishiue T, Iwasaka T. Usefulness of strain rate imaging in detecting ischemic myocardium during dobutamine stress. Int. J. Cardiol.102(2), 225–231 (2005).
  • Bansal M, Jeffriess L, Leano R, Mundy J, Marwick TH. Assessment of myocardial viability at dobutamine echocardiography by deformation analysis using tissue velocity and speckle-tracking. JACC Cardiovasc. Imaging3(2), 121–131 (2010).
  • Thibault H, Derumeaux G. Assessment of myocardial ischemia and viability using tissue Doppler and deformation imaging: the lessons from the experimental studies. Arch. Cardiovasc. Dis.101(1), 61–68 (2008).
  • Cuocolo A, Acampa W, Imbriaco M, De Luca N, Iovino GL, Salvatore M. The many ways to myocardial perfusion imaging. Q. J. Nucl. Med. Mol. Imaging49(1), 4–18 (2005).
  • Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ. Cardiovasc. Imaging2(5), 412–424 (2009).
  • Underwood SR, Bax JJ, Dahl VJ et al. Imaging techniques for the assessment of myocardial hibernation. Eur. Heart J.25(10), 815–836 (2004).
  • Kapur A, Latus KA, Davies G et al. A comparison of three radionuclide myocardial perfusion tracers in clinical practice: the ROBUST study. Eur. J. Nucl. Med. Mol. Imaging29(12), 1608–1616 (2002).
  • Nielsen AP, Morris KG, Murdock R et al. Linear relationship between the distribution of thallium-201 and blood flow in ischemic and nonischemic myocardium during exercise. Circulation61(4), 797–801 (1980).
  • Beller GA, Watson DD, Ackell P, Pohost GM. Time course of thallium-201 redistribution after transient myocardial ischemia. Circulation61(4), 791–797 (1980).
  • Udelson JE, Coleman PS, Metherall J et al. Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201-Tl and 99m Tc-sestamibi. Circulation89(6), 2552–2561 (1994).
  • Vaduganathan P, He ZX, Raghavan C et al. Detection of left anterior descending coronary artery stenosis in patients with left bundle branch block: exercise, adenosine or dobutamine imaging? J. Am. Coll. Cardiol.28(3), 543–550 (1996).
  • Yao SS, Rozanski A. Principal uses of myocardial perfusion scintigraphy in the management of patients with known or suspected coronary artery disease. Prog. Cardiovasc. Dis.43(4), 281–302 (2001).
  • Sciagrà R, Pellegri M, Pupi A et al. Prognostic implications of Tc-99m sestamibi viability imaging and subsequent therapeutic strategy in patients with chronic coronary artery disease and left ventricular dysfunction. J. Am. Coll. Cardiol.36(3), 739–745 (2000).
  • He W, Acampa W, Mainolfi C et al. Tc-99m tetrofosmin tomography after nitrate administration in patients with ischemic left ventricular dysfunction: relation to metabolic imaging by PET. J. Nucl. Cardiol.10(6), 599–606 (2003).
  • Abidov A, Bax JJ, Hayes SW et al. Transient ischemic dilation ratio of the left ventricle is a significant predictor of future cardiac events in patients with otherwise normal myocardial perfusion SPECT. J. Am. Coll. Cardiol.42(10), 1818–1825 (2003).
  • Duvall WL, Wijetunga MN, Kelin TM et al. The prognosis of a normal stress-only Tc-99m myocardial perfusion imaging study. J. Nucl. Cardiol.17(3), 370–377 (2010).
  • Slomka PJ, Patton JA, Berman DS et al. Advances in technical aspects of myocardial perfusion SPECT imaging. J. Nucl. Cardiol.16(2), 255–276 (2009).
  • Maddahi J, Kiat H, Friedman JD, Berman DS, Van Train KF, Garcia EV. Technetium-99m-sestamibi myocardial perfusion imaging for evaluation of coronary artery disease. In: Nuclear Cardiology: State of the Art and Future Directions (1st Edition). Zaret BL, Beller GA (Eds). Mosby-Year Book, St Louis, MO, USA, 191–200 (1993).
  • Shaw LJ, Berman DS, Maron DJ et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation117(10), 1283–1291 (2008).
  • Mahmarian JJ, Shaw LJ, Filipchuk NG et al. A multinational study to establish the value of early adenosine technetium-99m sestamibi myocardial perfusion imaging in identifying a low-risk group for early hospital discharge after acute myocardial infarction. J. Am. Coll. Cardiol.48(12), 2448–2457 (2006).
  • Druz RS. Current advances in vasodilator pharmacological stress perfusion imaging. Semin. Nucl. Med.39(3), 204–209 (2009).
  • McClellan J, Travin M, Herman S et al. Prognostic importance of scintigraphic left ventricular cavity dilatation during intravenous dipyridamole technetiun-99m sestamibi myocardial tomographic imaging in predicting coronary events. Am. J. Cardiol.79(5), 600–605 (1997).
  • Hendel RC, Berman DS, Di Carli et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging. Circulation119(22), e561–e587 (2009).
  • Marzullo P, Parodi O, Reisenhofer B et al. Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am. J. Cardiol.71(2), 166–172 (1993).
  • Beanlands RS, Nichol G, Huszti E et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J. Am. Coll. Cardiol.50(20), 2002–2012 (2007).
  • Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation115(11), 1464–1480 (2007).
  • Machac J. Cardiac positron emission tomography imaging. SeminNucl. Med.35(1), 17–36 (2005).
  • Heller GV, Calnon D, Dorbala S. Recent advances in cardiac PET and PET/CT myocardial perfusion imaging. J. Nucl. Cardiol.16(6), 962–969 (2009).
  • Beller GA, Bergmann SR. Myocardial perfusion imaging agents: SPECT and PET. J. Nucl. Cardiol.11(1), 71–86 (2004).
  • Yalamanchili P, Wexler E, Hayes M. et al. Mechanism of uptake and retention of F-18 BMS-747158–02 in cardiomyocytes: a novel PET myocardial imaging agent. J. Nucl. Cardiol.14(6), 782–788 (2007).
  • Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J. Am. Coll. Cardiol.54(1), 1–15 (2009).
  • Nandalur KR, Dwamena BA, Choudhri AF, Nandalur SR, Reddy P, Carlos RC. Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad. Radiol.15(4), 444–451 (2008).
  • Bateman TM, Heller GV, McGhie AI et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J. Nucl. Cardiol.13(1), 24–33 (2006).
  • Yoshinaga K, Chow BJ, Williams K et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J. Am. Coll. Cardiol.48(5), 1029–1039 (2006).
  • Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am. J. Cardiol.80(7), 865–870 (1997).
  • Dorbala S, Hachamovitch R, Curillova Z et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc. Imaging2(7), 846–854 (2009).
  • Lertsburapa K, Ahlberg AW, Bateman TM et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J. Nucl. Cardiol.15(6), 745–753 (2008).
  • Schindler TH, Schelbert HR, Quercioli A, Dilsizian L. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc. Imaging3(6), 623–640 (2010).
  • Di Carli MF, Davidson M, Little R et al. Value of metabolic imaging with position emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am. J. Cardiol.73(8), 527–533 (1994).
  • Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr. Prob. Cardiol.32(7), 375–410 (2007).
  • Siebelink HM, Blanksma PK, Crijns HJ et al. No difference in cardiac event-free survival between positron emission tomographyguided and single-photon emission computed tomography-guided patient management: a prospective, randomized comparison of patients with suspicion of jeopardized myocardium. J. Am. Coll. Cardiol37(1), 81–88 (2001).
  • Cerqueira MD. Diagnosis and prognosis of coronary artery disease: PET is superior to SPECT: con. J. Nucl. Cardiol.17(4), 683–695 (2010).
  • Di Carli MF, Hachamovitch R. Hybrid PET/CT is greater than the sum of its parts. J. Nucl. Cardiol.15(1), 118–122 (2008).
  • Di Carli MF, Dorbala S, Curillova Z et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J. Nucl. Cardiol.14(6), 799–809 (2007).
  • Kaufmann PA, Di Carli MF. Hybrid SPECT/CT and PET/CT imaging: the next step in noninvasive cardiac imaging. Semin. Nucl. Med.39(5), 341–347 (2009).
  • Katikireddy CK, McConnell MV. Cardiac MRI and CT. A Practical Approach to Cardiovascular Medicine (First Edition). Blackwell Publishing, Oxford, UK (2011).
  • Kim HW, Klem I, Kim RJ. Detection of myocardial ischemia by stress perfusion. Cardiovasc. Magn. Reson. Cardiol. Clin.25(1), 57–70 (2007).
  • Harmon M, Fau G, Nee G, Ehtisham J, Morello R, Hamon M. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J. Cardiovasc. Magn. Reson.12(1), 29 (2010).
  • Patel AR, Antkowiak PF, Nandalur KR et al. Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J. Am. Coll. Cardiol.56(7), 561–569 (2010).
  • Schwitter J, Wacker CM, Rossum AC et al. MR-IMPACT: comparison of perfusion–cardiac magnetic resonance with single photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur. Heart J.29(4), 480–489 (2008).
  • Paetsch I, Jahnke C, Wahl A et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation110(7), 835–842 (2004).
  • Jahnke C, Nagel E, Gebker R et al. Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation115(13), 1769–1776 (2007).
  • Hendel RC, Patel MR, Kramer CM et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. J. Am. Coll. Cardiol.48(7), 1475–1497 (2006).
  • Raman SV, Dickerson JA, Jekic M et al. Real-time cine and myocardial perfusion with treadmill exercise stress cardiovascular magnetic resonance in patients referred for stress SPECT. J. Cardiovasc. Magn. Reson.12(12), 41 (2010).
  • Hundley WG, Blumke DA, Finn JP et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J. Am. Coll. Cardiol.55(23), 2614–2662 (2010).
  • Jackson E, Bellenger N, Seddon M, Harden S, Peebles C. Ischaemic and non-ischaemic cardiomyopathies cardiac MRI appearances with delayed enhancement. Clin. Radiol.62(5), 395–403 (2007).
  • Kim RJ, Wu E, Rafael A et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med.343(20), 1445–1453 (2000).
  • Cheong BY, Muthupillai R, Wilson JM et al. Prognostic significance of delayed-enhancement magnetic resonance imaging: survival of 857 patients with and without left ventricular dysfunction. Circulation120(21), 2069–2076 (2009).
  • Steel K, Broderick R, Gandla V et al. Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation120(14), 1390–1400 (2009).
  • Hachamovitch R. Assessing the prognostic value of cardiovascular imaging: a statistical exercise or a guide to clinical value and application? Circulation120(14), 1342–1344 (2009).
  • Cho JR, Park S, Choi BW et al. Delayed enhancement magnetic resonance imaging is a significant prognostic factor in patients with non-ischemic cardiomyopathy. Circ J.74(3), 476–483 (2010).
  • Wu KC, Zerhouni EA, Judd RM et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation97(8), 765–772 (1998).
  • Bastarrika G, Ramos-Duran L, Schoepf UJ et al. Adenosine-stress dynamic myocardial volume perfusion imaging with second generation dual-source computed tomography: concepts and first experiences. J. Cardiovasc. Comput. Tomogr.4(2), 127–135 (2010).
  • Mendoza DD, Joshi SB, Weissman G, Taylor AJ, Weigold WG. Viability imaging by cardiac computed tomography. J. Cardiovasc. Comput. Tomogr.4(2), 83–91 (2010).
  • Taylor AJ, Cerqueira M, Hodgson JM et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. Circulation122(21), e525–e255 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.