243
Views
42
CrossRef citations to date
0
Altmetric
Review

Macrophage cholesterol homeostasis and metabolic diseases: critical role of cholesteryl ester mobilization

Pages 329-340 | Published online: 10 Jan 2014

References

  • D’Agostino RB, R.ussell MW, Huse DM et al. Primary and subsequent coronary risk appraisal: new results from the Framingham study. Am. Heart J.139(2 Pt 1), 272–281 (2000).
  • Greenland P, Knoll MD, Stamler J et al. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA290(7), 891–897 (2003).
  • Ni H, Coady S, Rosamond W et al. Trends from 1987 to 2004 in sudden death due to coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. Am. Heart J.157(1), 46–52 (2009).
  • Executive Summary of the Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA285, 2486–2497 (2001).
  • Baigent C, Keech A, Kearney PM et al.; Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet366(9493), 1267–1278 (2005).
  • LaRosa JC, Grundy SM, Waters DD et al.; Treating to New Targets (TNT) Investigators. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N. Engl. J. Med.352(14), 1425–1435 (2005).
  • Fruchart JC, Sacks F, Hermans MP et al. The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia. Am. J. Cardiol.102(10 Suppl.), 1K–34K (2008).
  • Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med.62(5), 707–714 (1977).
  • Assmann G, Schulte H, von Eckardstein A, Huang Y. High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport. Atherosclerosis124, S11–S20 (1996).
  • Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr. Opin. Lipidol.21(4), 312–318 (2010).
  • Chapman MJ. Therapeutic elevation of HDL-cholesterol to prevent atherosclerosis and coronary heart disease. Pharmacol. Ther.111(3), 893–908 (2006).
  • Heinecke JW. The HDL proteome: a marker – and perhaps mediator – of coronary artery disease. J. Lipid Res.50, S167–S171 (2009).
  • Chapman MJ, Le Goff W, Guerin M, Kontush A. Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. Eur. Heart J.31(2), 149–164 (2010).
  • Brundert M, Heeren J, Merkel M et al. Scavenger receptor CD36 mediates uptake of high density lipoproteins by tissues in mice and by cultured cells. J. Lipid Res. DOI: 10.1194/jlr.M011981 (2011) (Epub ahead of print).
  • Fabre AC, Malaval C, Ben Addi A et al. P2Y13 receptor is critical for reverse cholesterol transport. Hepatology52, 1477–1483 (2010).
  • Webb NR, Cai L, Ziemba KS et al. The fate of HDL particles in vivo after SR-BI–mediated selective lipid uptake. J. Lipid Res.43, 1890–1898 (2002).
  • Webb NR, De Beer MC, Asztalos BF et al. Remodeling of HDL remnants generated by scavenger receptor class B type I. J. Lipid Res.45, 1666–1673 (2004).
  • Kozyraki R, Fyfe J, Kristiansen M et al. The intrinsic factor-vitamin B12 receptor, cubilin, is a high affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. Nat. Med.5, 656–661 (1999).
  • Lee JY, Lanningham-Foster L, Boudyguina EY et al. Pre-β high density lipoprotein has two metabolic fates in human apolipoprotein A-I transgenic mice. J. Lipid Res.45, 716–728 (2004).
  • Ghosh S, Zhao B, Bie J, Song J. Macrophage cholesteryl ester mobilization and atherosclerosis. Vascul. Pharmacol.52(1–2), 1–10 (2010).
  • Jian B, de la Llera-Moya M, Royer L et al. Modification of the cholesterol efflux properties of human serum by enrichment with phospholipid. J. Lipid Res.38, 734–744 (1997).
  • Adorni MP, Zimetti F, Billheimer JT et al. The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res.48(11), 2453–2462 (2007).
  • Zhao B, Song J, St Clair RW, Ghosh S. Stable over-expression of human macrophage cholesteryl ester hydrolase (ceh) results in enhanced free cholesterol efflux from human thp1-macrophages. Am. J. Physiol. Cell Physiol.292(1), C405–C412 (2007).
  • Zhou H, Tan KC, Shiu SW, Wong Y. Cellular cholesterol efflux to serum is impaired in diabetic nephropathy. Diabetes Metab. Res. Rev.24(8), 617–623 (2008).
  • Zhou H, Shiu SW, Wong Y, Tan KC. Impaired serum capacity to induce cholesterol efflux is associated with endothelial dysfunction in Type 2 diabetes mellitus. Diab. Vasc. Dis. Res.6(4), 238–243 (2009).
  • Ripollés Piquer B, Nazih H, Bourreille A et al. Altered lipid, apolipoprotein, and lipoprotein profiles in inflammatory bowel disease: consequences on the cholesterol efflux capacity of serum using Fu5AH cell system. Metabolism55(7), 980–988 (2006).
  • Kruth HS. Sequestration of aggregated low-density lipoproteins by macrophages. Curr. Opin. Lipidol.13(5), 483–488 (2002).
  • Kruth HS, Jones NL, Huang W et al. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem.1280(3), 2352–2360 (2005).
  • Kruth HS, Huang W, Ishii I, Zhang WY. Macrophage foam cell formation with native low density lipoprotein. J. Biol. Chem.277(37), 34573–34580 (2002).
  • Choi SH, Harkewicz R, Lee JH et al. Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ. Res.104, 1355–1363 (2009).
  • Tabas I. Cholesterol and phospholipid metabolism in macrophages. Biochim. Biophys. Acta,1529(1–3), 164–174 (2000).
  • Brown MS, Ho YK, Goldstein JL. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J. Biol. Chem.255(19), 9344–9352 (1980).
  • Rothblat GH, de la Llera-Moya M, Favari E, Yancey PG, Kellner-Weibel G. Cellular cholesterol flux studies: methodological considerations. Atherosclerosis163(1), 1–8 (2002).
  • Ishii I, Oka M, Katto N, Shirai K, Saito Y, Hirose S. β-VLDL-induced cholesterol ester deposition in macrophages may be regulated by neutral cholesterol esterase activity. Arterioscler. Thromb.12, 1139–1145 (1992).
  • Mathur SN, Field FJ, Megan MB, and Armstrong HL. A defect in mobilization of cholesteryl esters in rabbit macrophages. Biochim. Biophys. Acta834, 48–57 (1985).
  • Yancey PG and St. Clair RW. Mechanism of the defect in cholesteryl ester clearance from macrophages of atherosclerosis-susceptible White Carneau pigeons. J. Lipid Res.35, 2114–2129 (1994).
  • Brunham LR, Singaraja RR, Duong M et al. Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis. Arterioscler. Thromb. Vasc. Biol.29(4), 548–554 (2009).
  • Burgess B, Naus K, Chan J et al. Overexpression of human ABCG1 does not affect atherosclerosis in fat-fed ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol.28(10), 1731–1737 (2008).
  • Yvan-Charvet L, Ranalletta M, Wang N et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J. Clin. Invest.117(12), 3900–3908 (2007).
  • Singaraja RR, Fievet C, Castro G et al. Increased ABCA1 activity protects against atherosclerosis. J. Clin. Invest.110, 35–42 (2002).
  • Joyce CW, Wagner EM, Basso F et al. ABCA1 overexpression in the liver of LDLr-KO mice leads to accumulation of pro-atherogenic lipoproteins and enhanced atherosclerosis. J. Biol. Chem.281(44), 33053–33065 (2006).
  • Ye D, Lammers B, Zhao Y et al. ATP-binding cassette transporters A1 and G1, HDL metabolism, cholesterol efflux, and inflammation: important targets for the treatment of atherosclerosis. Curr. Drug. Targets PubMed PMID: 21039336 (2010) (Epub ahead of print).
  • Sliskovic DR, White AD. Therapeutic potential of ACAT inhibitors as lipid lowering and anti-atherosclerotic agents. Trends Pharmacol. Sci.12, 194–199 (1991).
  • Matsuda K. ACAT inhibitors as antiatherosclerotic agents. Med. Res. Rev.14, 271–305 (1994).
  • Matsuo M , Ito F, Konto A, Aketa M, Tomoi M, Shimomura K. Effect of FR145237, a novel ACAT inhibitor on atherogenesis in cholesterol fed and WHHl rabbits. Evidence for a direct effect on the arterial wall. Biochem. Biophys. Acta1259, 254–260 (1995).
  • Nicolosi RJ, Wilson TA, Krause BR. The ACAT inhibitor, CI 1011 is effective in the prevention and regression of aortic fatty streak in hamsters. Atherosclerosis137, 77–85 (1998).
  • Perrey S, Legendre C, Matsuura A et al. Preferential pharmacological inhibition of macrophage ACAT increases plaque formation in mouse and rabbit models of atherogenesis. Atherosclerosis155, 359–370 (2001).
  • Accad M, Smith S, Newland D et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase-1. J. Clin. Invest.105, 711–719 (2000).
  • Yagu H, Kitamine T, Osuga J et al. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J. Biol. Chem.275, 21324–21330 (2000).
  • Fazio S, Major AS, Swift LL et al. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J. Clin. Invest.107, 163–171 (2001).
  • Bocan TM, Krause BR, Rosebury WS et al. The ACAT inhibitor avasimbe reduces macrophages and matrix metalloproteinase expression in atherosclerotic lesion of hypercholesterolemic rabbits. Arteioscler. Thromb. Vasc. Biol.20, 70–79 (2000).
  • Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell104, 503–516 (2001).
  • Warner GJ, Stoudt G, Bamberger M, Johnson WJ, Rothblat GH. Cell toxicity induced by inhibition of acyl coenzyme A:cholesterol acyltransferase and accumulation of unesterified cholesterol. J. Biol. Chem.270, 5772–5778 (1995).
  • Ghosh S, St Clair RW, Rudel LL. Mobilization of cytoplasmic CE droplets by over-expression of human macrophage cholesteryl ester hydrolase. J. Lipid Res.44, 1833–1840 (2003).
  • Ghosh S. Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing and expression of full-length cDNA. Physiol. Genomics2, 1–8 (2000).
  • Zhao B, Fisher BJ, St Clair RW, Rude LL, Ghosh S. Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J. Lipid Res.46, 2114–2121 (2005).
  • Crow JA, Middleton BL, Borazjani A, Hatfield MJ, Potter PM, Ross MK. Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages. Biochim. Biophys. Acta1781(10), 643–654 (2008).
  • Zhao B, Song J, Chow WN, St Clair RW, Rudel LL, Ghosh S. Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J. Clin. Invest.117(10), 2983–2992 (2007).
  • Zhao B, Song J, Ghosh S. Hepatic overexpression of cholesteryl ester hydrolase enhances cholesterol elimination and in vivo reverse cholesterol transport. J. Lipid Res.49(10), 2212–2217 (2008).
  • Fazio S, Linton MF. The inflamed plaque: cytokine production and cellular cholesterol balance in the vessel wall. Am. J. Cardiol.88, 12E–15E (2001).
  • Koseki M, Hirano K, Masuda D et al. Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-α secretion in Abca1-deficient macrophages. J. Lipid Res.48, 299–306 (2007).
  • Levine DM, Parker TS, Donnelly TM, Walsh A, Rubin AL. In vivo protection against endotoxin by plasma high density lipoprotein. Proc. Natl Acad. Sci. USA90, 12040–12044 (1993).
  • Francone OL, Royer L, Boucher G et al. Increased cholesterol deposition, expression of scavenger receptors, and response to chemotactic factors in Abca1-deficient macrophages. Arterioscler. Thromb. Vasc. Biol.25, 1198–1205 (2005).
  • Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol.30(2), 139–143 (2010).
  • Patel S, Drew BG, Nakhla S et al. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with Type 2 diabetes. J. Am. Coll. Cardiol.53, 962–971 (2009).
  • Bie J, Zhao B, Song J, Ghosh S. Improved insulin sensitivity in high fat- and high cholesterol-fed Ldlr-/- mice with macrophage-specific transgenic expression of cholesteryl ester hydrolase: role of macrophage inflammation and infiltration into adipose tissue. J. Biol. Chem.285(18), 13630–13637 (2010).
  • Besedovsky HO, Del Rey A. Metabolic and endocrine actions of interleukin-1. Effects on insulin-resistant animals. Ann. NY Acad. Sci.594, 214–221 (1990).
  • Vozarova B, Weyer C, Hanson K, Tataranni P, Bogardus C, Pratley R. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes. Res.9, 414–417 (2001).
  • Hotamisligil G, Shargill N, Spiegelman B. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science259, 87–91 (1993).
  • Taishi P, Churchill L, De A, Obal F, Krueger JM. Cytokine mRNA induction by interleukin-1β or tumor necrosis factor alpha in vitro and in vivo. Brain Res.1226, 89–98 (2008).
  • Lagathu C, Bastard JP, Auclair M, Maachi M, Capeau J, Caron M. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem. Biophys. Res. Commun.311, 372–379 (2003).
  • Jager J, Grémeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF. Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology148, 241–251, (2007).
  • Alvarez B, Quinn LS, Busquets B, Quiles MT, Lopez-Soriano FJ, Argiles JM. Tumor necrosis factor-α exerts interleukin-6-dependent and -independent effects on cultured skeletal muscle cells. Biochim. Biophys. Acta1542, 66–72 (2002).
  • Maedler K, Dharmadhikari G, Schumann DM, Størling J. Interleukin-1β targeted therapy for Type 2 diabetes. Expert Opin. Biol. Ther.9, 1177–1188 (2009).
  • Honda H, Qureshi AR, Heimburger O et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am. J. Kidney Dis.47, 139–148 (2006).
  • Soriano S, Gonzalez L, Martin-Malo A et al. C-reactive protein and low albumin are predictors of morbidity and cardiovascular events in chronic kidney disease (CKD) 3–5 patients. Clin. Nephrol.67, 352–357 (2007).
  • Shah DS, Polkinhorne KR, Pellicano R, Kerr PG. Are traditional risk factors valid for assessing cardiovascular risk in end-stage renal failure patients? Nephrology (Carlton)13, 667–671 (2008).
  • Parekh RS, Plantinga LC, Kao WH et al. The association of sudden cardiac death with inflammation and other traditional risk factors. Kidney Int.74, 1335–1342 (2008).
  • Yamamoto S, Kon V. Mechanisms for increased cardiovascular disease in chronic kidney dysfunction. Curr. Opin. Nephrol. Hypertens.18(3), 181–188 (2009).
  • Moradi H, Pahl MV, Elahimehr R, Vaziri ND. Impaired antioxidant activity of high-density lipoprotein in chronic kidney disease. Transl. Res.153(2), 77–85 (2009).
  • Nissen SE, Tsunoda T, Tuzcu EM et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA290(17), 2292–2300 (2003).
  • Vakili L, Hama S, Kim JB et al. The effect of HDL mimetic peptide 4F on PON1. Adv. Exp. Med. Biol.660, 167–172 (2010).
  • Smith JD. Apolipoprotein A-I and its mimetics for the treatment of atherosclerosis. Curr. Opin. Investig. Drugs11(9), 989–996 (2010).
  • Sherman CB, Peterson SJ, Frishman WH. Apolipoprotein A-I mimetic peptides: a potential new therapy for the prevention of atherosclerosis. Cardiol. Rev.18(3), 141–147 (2010).
  • White CR, Datta G, Mochon P et al. Vasculoprotective effects of apolipoprotein mimetic peptides: an evolving paradigm in HDL therapy. Vasc. Dis. Prev.6, 122–130 (2009).
  • Navab M, Anantharamaiah GM, Reddy ST, Fogelman AM. Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. Nat. Clin. Pract. Cardiovasc. Med.3(10), 540–547 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.