240
Views
107
CrossRef citations to date
0
Altmetric
Theme: Lipoprotein Disorders - Review

HDL dysfunction in diabetes: causes and possible treatments

&
Pages 353-361 | Published online: 10 Jan 2014

References

  • Farbstein D, Levy AP. Pharmacogenomics and the prevention of vascular complications in diabetes mellitus. Therapy6(4), 531–538 (2009).
  • Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell104(4), 503–516 (2001).
  • D’agostino RB, Vasan RS, Pencina MJ et al. General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation117(6), 743–753 (2008).
  • Norata GD, Pirillo A, Catapano AL. Modified HDL: biological and physiopathological consequences. Nutr. Metab. Cardiovasc. Dis.16(5), 371–386 (2006).
  • Ragbir S, Farmer JA. Dysfunctional high-density lipoprotein and atherosclerosis. Curr. Atheroscler. Rep.12(5), 343–348 (2010).
  • Asztalos BF, Tani M, Schaefer EJ. Metabolic and functional relevance of HDL subspecies. Curr. Opin. Lipidol.22(3), 176–185 (2011).
  • Rothblat GH, Phillips MC. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr. Opin. Lipidol.21(3), 229–238 (2010).
  • Von Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol.21(1), 13–27 (2001).
  • Calabresi L, Baldassarre D, Simonelli S et al. Plasma lecithin: cholesterol acyltransferase and carotid intima–media thickness in European individuals at high cardiovascular risk. J. Lipid Res.52(8), 1569–1574 (2011).
  • Holleboom AG, Kuivenhoven JA, Vergeer M et al. Plasma levels of lecithin: cholesterol acyltransferase and risk of future coronary artery disease in apparently healthy men and women: a prospective case–control analysis nested in the EPIC-Norfolk population study. J. Lipid Res.51(2), 416–421 (2010).
  • Hovingh GK, Hutten BA, Holleboom AG et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation112(6), 879–884 (2005).
  • Dallinga-Thie GM, Dullaart RP, Van Tol A. Concerted actions of cholesteryl ester transfer protein and phospholipid transfer protein in Type 2 diabetes: effects of apolipoproteins. Curr. Opin. Lipidol.18(3), 251–257 (2007).
  • De Beer MC, Durbin DM, Cai L et al. Apolipoprotein A-II modulates the binding and selective lipid uptake of reconstituted high density lipoprotein by scavenger receptor BI. J. Biol. Chem.276(19), 15832–15839 (2001).
  • Graversen JH, Castro G, Kandoussi A et al. A pivotal role of the human kidney in catabolism of HDL protein components apolipoprotein A-I and A-IV but not of A-II. Lipids43(5), 467–470 (2008).
  • Dugue-Pujol S, Rousset X, Chateau D et al. Apolipoprotein A-II is catabolized in the kidney as a function of its plasma concentration. J. Lipid Res.48(10), 2151–2161 (2007).
  • Navab M, Hama SY, Cooke CJ et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J. Lipid Res.41(9), 1481–1494 (2000).
  • Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr. Opin. Lipidol.21(4), 312–318 (2010).
  • Kontush A, Chapman MJ. Antiatherogenic small, dense HDL – guardian angel of the arterial wall? Nat. Clin. Pract. Cardiovasc. Med.3(3), 144–153 (2006).
  • Goulinet S, Chapman MJ. Plasma LDL and HDL subspecies are heterogenous in particle content of tocopherols and oxygenated and hydrocarbon carotenoids. Relevance to oxidative resistance and atherogenesis. Arterioscler. Thromb. Vasc. Biol.17(4), 786–796 (1997).
  • Tabet F, Lambert G, Cuesta Torres LF et al. Lipid-free apolipoprotein A-I and discoidal reconstituted high-density lipoproteins differentially inhibit glucose-induced oxidative stress in human macrophages. Arterioscler. Thromb. Vasc. Biol.31(5), 1192–1200 (2011).
  • Van Lenten BJ, Hama SY, De Beer FC et al. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J. Clin. Invest.96(6), 2758–2767 (1995).
  • Navab M, Imes SS, Hama SY et al. Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J. Clin. Invest.88(6), 2039–2046 (1991).
  • Ashby DT, Rye KA, Clay MA, Vadas MA, Gamble JR, Barter PJ. Factors influencing the ability of HDL to inhibit expression of vascular cell adhesion molecule-1 in endothelial cells. Arterioscler. Thromb. Vasc. Biol.18(9), 1450–1455 (1998).
  • Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol.15(11), 1987–1994 (1995).
  • Gruaz L, Delucinge-Vivier C, Descombes P, Dayer JM, Burger D. Blockade of T cell contact-activation of human monocytes by high-density lipoproteins reveals a new pattern of cytokine and inflammatory genes. PLoS One5(2), e9418 (2010).
  • Hyka N, Dayer JM, Modoux C et al. Apolipoprotein A-I inhibits the production of interleukin-1β and tumor necrosis factor-α by blocking contact-mediated activation of monocytes by T lymphocytes. Blood97(8), 2381–2389 (2001).
  • Carpintero R, Gruaz L, Brandt KJ et al. HDL interfere with the binding of T cell microparticles to human monocytes to inhibit pro-inflammatory cytokine production. PLoS One5(7), e11869 (2010).
  • Suzuki M, Pritchard DK, Becker L et al. High-density lipoprotein suppresses the Type 1 interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide. Circulation122(19), 1919–1927 (2010).
  • Adiels M, Olofsson SO, Taskinen MR, Boren J. Diabetic dyslipidaemia. Curr. Opin. Lipidol.17(3), 238–246 (2006).
  • Brunham LR, Kruit JK, Hayden MR, Verchere CB. Cholesterol in β-cell dysfunction: the emerging connection between HDL cholesterol and Type 2 diabetes. Curr. Diab. Rep.10(1), 55–60 (2010).
  • Verges B, Florentin E, Baillot-Rudoni S et al. Rosuvastatin 20 mg restores normal HDL-apoA-I kinetics in Type 2 diabetes. J. Lipid Res.50(6), 1209–1215 (2009).
  • Koo SH, Dutcher AK, Towle HC. Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver. J. Biol. Chem.276(12), 9437–9445 (2001).
  • Shimomura I, Bashmakov Y, Horton JD. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem.274(42), 30028–30032 (1999).
  • Van Deursen D, Jansen H, Verhoeven AJ. Glucose increases hepatic lipase expression in HepG2 liver cells through upregulation of upstream stimulatory factors 1 and 2. Diabetologia51(11), 2078–2087 (2008).
  • Lewis GF, Murdoch S, Uffelman K et al. Hepatic lipase mRNA, protein, and plasma enzyme activity is increased in the insulin-resistant, fructose-fed Syrian golden hamster and is partially normalized by the insulin sensitizer rosiglitazone. Diabetes53(11), 2893–2900 (2004).
  • Baynes C, Henderson AD, Anyaoku V et al. The role of insulin insensitivity and hepatic lipase in the dyslipidaemia of Type 2 diabetes. Diabet. Med.8(6), 560–566 (1991).
  • Lamarche B, Rashid S, Lewis GF. HDL metabolism in hypertriglyceridemic states: an overview. Clin. Chim. Acta286(1–2), 145–161 (1999).
  • Sparks DL, Davidson WS, Lund-Katz S, Phillips MC. Effects of the neutral lipid content of high density lipoprotein on apolipoprotein A-I structure and particle stability. J. Biol. Chem.270(45), 26910–26917 (1995).
  • Curtiss LK, Witztum JL. Plasma apolipoproteins AI, AII, B, CI, and E are glucosylated in hyperglycemic diabetic subjects. Diabetes34(5), 452–461 (1985).
  • Hedrick CC, Thorpe SR, Fu MX et al. Glycation impairs high-density lipoprotein function. Diabetologia43(3), 312–320 (2000).
  • Ferretti G, Bacchetti T, Marchionni C, Caldarelli L, Curatola G. Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol.38(4), 163–169 (2001).
  • Duell PB, Oram JF, Bierman EL. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes40(3), 377–384 (1991).
  • Duell PB, Oram JF, Bierman EL. Nonenzymatic glycosylation of HDL resulting in inhibition of high-affinity binding to cultured human fibroblasts. Diabetes39(10), 1257–1263 (1990).
  • Rashduni DL, Rifici VA, Schneider SH, Khachadurian AK. Glycation of high-density lipoprotein does not increase its susceptibility to oxidation or diminish its cholesterol efflux capacity. Metabolism48(2), 139–143 (1999).
  • Duell PB, Bierman EL. High glucose levels do not directly impair cellular binding of HDL3 or HDL-mediated efflux of cholesterol from human skin fibroblasts. Acta Diabetol.28(2), 174–178 (1991).
  • Passarelli M, Tang C, Mcdonald TO et al. Advanced glycation end product precursors impair ABCA1-dependent cholesterol removal from cells. Diabetes54(7), 2198–2205 (2005).
  • Ohgami N, Nagai R, Miyazaki A et al. Scavenger receptor class B type 1-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J. Biol. Chem.276(16), 13348–13355 (2001).
  • Rosenblat M, Sapir O, Aviram M et al. Glucose inactivates paraoxonase 1 (PON1) and displaces it from high density lipoprotein (HDL) to a free PON1 form. In: The Paraoxonases: Their Role in Disease Development and Xenobiotic Metabolism. Ridley A, Frampton J (Eds). Springer, Berlin, Germany, 35–49 (2008).
  • Zhou H, Tan KC, Shiu SW, Wong Y. Increased serum advanced glycation end products are associated with impairment in HDL antioxidative capacity in diabetic nephropathy. Nephrol. Dial. Transplant.23(3), 927–933 (2008).
  • Nakhjavani M, Esteghamati A, Esfahanian F, Ghanei A, Rashidi A, Hashemi S. HbA1c negatively correlates with LCAT activity in Type 2 diabetes. Diabetes Res. Clin. Pract.81(1), 38–41 (2008).
  • Nobecourt E, Davies MJ, Brown BE et al. The impact of glycation on apolipoprotein A-I structure and its ability to activate lecithin:cholesterol acyltransferase. Diabetologia50(3), 643–653 (2007).
  • Nobecourt E, Tabet F, Lambert G et al. Nonenzymatic glycation impairs the anti-inflammatory properties of apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol.30(4), 766–772 (2010).
  • Zheng L, Nukuna B, Brennan ML et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest.114(4), 529–541 (2004).
  • Pennathur S, Bergt C, Shao B et al. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J. Biol. Chem.279(41), 42977–42983 (2004).
  • Bergt C, Pennathur S, Fu X et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc. Natl Acad. Sci. USA101(35), 13032–13037 (2004).
  • Shao B, Bergt C, Fu X et al. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem.280(7), 5983–5993 (2005).
  • Shao B, Tang C, Heinecke JW, Oram JF. Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J. Lipid Res.51(7), 1849–1858 (2010).
  • Wu Z, Wagner MA, Zheng L et al. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol.14(9), 861–868 (2007).
  • Shao B, Cavigiolio G, Brot N, Oda MN, Heinecke JW. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc. Natl Acad. Sci. USA105(34), 12224–12229 (2008).
  • Asleh R, Guetta J, Kalet-Litman S, Miller-Lotan R, Levy AP. Haptoglobin genotype- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo. Circ. Res.96(4), 435–441 (2005).
  • Asleh R, Marsh S, Shilkrut M et al. Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ. Res.92(11), 1193–1200 (2003).
  • Levy AP, Purushothaman KR, Levy NS et al. Downregulation of the hemoglobin scavenger receptor in individuals with diabetes and the Hp 2-2 genotype: implications for the response to intraplaque hemorrhage and plaque vulnerability. Circ. Res.101(1), 106–110 (2007).
  • Miller YI, Altamentova SM, Shaklai N. Oxidation of low-density lipoprotein by hemoglobin stems from a heme-initiated globin radical: antioxidant role of haptoglobin. Biochemistry36(40), 12189–12198 (1997).
  • Grinshtein N, Bamm VV, Tsemakhovich VA, Shaklai N. Mechanism of low-density lipoprotein oxidation by hemoglobin-derived iron. Biochemistry42(23), 6977–6985 (2003).
  • Bamm VV, Tsemakhovich VA, Shaklai M, Shaklai N. Haptoglobin phenotypes differ in their ability to inhibit heme transfer from hemoglobin to LDL. Biochemistry43(13), 3899–3906 (2004).
  • Watanabe J, Chou KJ, Liao JC et al. Differential association of hemoglobin with proinflammatory high density lipoproteins in atherogenic/hyperlipidemic mice. A novel biomarker of atherosclerosis. J. Biol. Chem.282(32), 23698–23707 (2007).
  • Spagnuolo MS, Cigliano L, D’Andrea LD, Pedone C, Abrescia P. Assignment of the binding site for haptoglobin on apolipoprotein A-I. J. Biol. Chem.280(2), 1193–1198 (2005).
  • Salvatore A, Cigliano L, Carlucci A, Bucci EM, Abrescia P. Haptoglobin binds apolipoprotein E and influences cholesterol esterification in the cerebrospinal fluid. J. Neurochem.110(1), 255–263 (2009).
  • Watanabe J, Grijalva V, Hama S et al. Hemoglobin and its scavenger protein haptoglobin associate with apoA-1-containing particles and influence the inflammatory properties and function of high density lipoprotein. J. Biol. Chem.284(27), 18292–18301 (2009).
  • Asleh R, Blum S, Kalet-Litman S et al. Correction of HDL dysfunction in individuals with diabetes and the haptoglobin 2-2 genotype. Diabetes57(10), 2794–2800 (2008).
  • Asleh R, Miller-Lotan R, Aviram M et al. Haptoglobin genotype is a regulator of reverse cholesterol transport in diabetes in vitro and in vivo. Circ. Res.99(12), 1419–1425 (2006).
  • Karabina SA, Lehner AN, Frank E, Parthasarathy S, Santanam N. Oxidative inactivation of paraoxonase – implications in diabetes mellitus and atherosclerosis. Biochim. Biophys. Acta1725(2), 213–221 (2005).
  • Aviram M, Rosenblat M, Billecke S et al. Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic. Biol. Med.26(7–8), 892–904 (1999).
  • Tavori H, Aviram M, Khatib S et al. Human carotid lesion linoleic acid hydroperoxide inhibits paraoxonase 1 (PON1) activity via reaction with PON1 free sulfhydryl cysteine 284. Free Radic. Biol. Med.50(1), 148–156 (2011).
  • Khovidhunkit W, Kim MS, Memon RA et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J. Lipid Res.45(7), 1169–1196 (2004).
  • Mcgillicuddy FC, De La Llera Moya M, Hinkle CC et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation119(8), 1135–1145 (2009).
  • Banka CL, Yuan T, De Beer MC, Kindy M, Curtiss LK, De Beer FC. Serum amyloid A (SAA): influence on HDL-mediated cellular cholesterol efflux. J. Lipid Res.36(5), 1058–1065 (1995).
  • Annema W, Nijstad N, Tolle M et al. Myeloperoxidase and serum amyloid A contribute to impaired in vivo reverse cholesterol transport during the acute phase response but not group IIA secretory phospholipase A(2). J. Lipid Res.51(4), 743–754 (2010).
  • Navab M, Reddy ST, Van Lenten BJ, Anantharamaiah GM, Fogelman AM. The role of dysfunctional HDL in atherosclerosis. J. Lipid Res.50(Suppl.), S145–S149 (2009).
  • Chiba T, Chang MY, Wang S et al. Serum amyloid A facilitates the binding of high-density lipoprotein from mice injected with lipopolysaccharide to vascular proteoglycans. Arterioscler. Thromb. Vasc. Biol.31(6), 1326–1332 (2011).
  • Alwaili K, Bailey D, Awan Z et al. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile. Biochim. Biophys. Acta doi:org/10.1016/j.bbalip.2011.07.013 (2011) (Epub ahead of print).
  • Vaisar T, Pennathur S, Green PS et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest.117(3), 746–756 (2007).
  • Oksjoki R, Kovanen PT, Pentikainen MO. Role of complement activation in atherosclerosis. Curr. Opin. Lipidol.14(5), 477–482 (2003).
  • Muscari A, Bozzoli C, Puddu GM et al. Association of serum C3 levels with the risk of myocardial infarction. Am. J. Med.98(4), 357–364 (1995).
  • Clark RW, Sutfin TA, Ruggeri RB et al. Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein: an initial multidose study of torcetrapib. Arterioscler. Thromb. Vasc. Biol.24(3), 490–497 (2004).
  • Brousseau ME, Schaefer EJ, Wolfe ML et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med.350(15), 1505–1515 (2004).
  • Kastelein JJ, Van Leuven SI, Burgess L et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N. Engl. J. Med.356(16), 1620–1630 (2007).
  • Nissen SE, Tardif JC, Nicholls SJ et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med.356(13), 1304–1316 (2007).
  • Barter PJ, Caulfield M, Eriksson M et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med.357(21), 2109–2122 (2007).
  • Bots ML, Visseren FL, Evans GW et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet370(9582), 153–160 (2007).
  • Sofat R, Hingorani AD, Smeeth L et al. Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms. Circulation121(1), 52–62 (2010).
  • Clerc RG, Stauffer A, Weibel F et al. Mechanisms underlying off-target effects of the cholesteryl ester transfer protein inhibitor torcetrapib involve L-type calcium channels. J. Hypertens.28(8), 1676–1686 (2010).
  • Cannon CP, Shah S, Dansky HM et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med.363(25), 2406–2415 (2010).
  • Brown BG, Zhao XQ, Chait A et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med.345(22), 1583–1592 (2001).
  • Grundy SM, Vega GL, Mcgovern ME et al. Efficacy, safety, and tolerability of once-daily niacin for the treatment of dyslipidemia associated with Type 2 diabetes: results of the assessment of diabetes control and evaluation of the efficacy of niaspan trial. Arch. Intern. Med.162(14), 1568–1576 (2002).
  • Lee JM, Robson MD, Yu LM et al. Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J. Am. Coll. Cardiol.54(19), 1787–1794 (2009).
  • Navab M, Shechter I, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Fogelman AM. Structure and function of HDL mimetics. Arterioscler. Thromb. Vasc. Biol.30(2), 164–168 (2010).
  • Morgantini C, Imaizumi S, Grijalva V, Navab M, Fogelman AM, Reddy ST. Apolipoprotein A-I mimetic peptides prevent atherosclerosis development and reduce plaque inflammation in a murine model of diabetes. Diabetes59(12), 3223–3228 (2010).
  • Morgantini C, Natali A, Boldrini B et al. Anti-inflammatory and antioxidant properties of HDLs are impaired in Type 2 diabetes. Diabetes60(10), 2617–2623 (2011).
  • Watson CE, Weissbach N, Kjems L et al. Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function. J. Lipid Res.52(2), 361–373 (2011).
  • Nissen SE, Tsunoda T, Tuzcu EM et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA290(17), 2292–2300 (2003).
  • Ibanez B, Giannarelli C, Cimmino G et al. Recombinant HDL (Milano) exerts greater anti-inflammatory and plaque stabilizing properties than HDL (wild-type). Atherosclerosis220(1), 72–77 (2012).
  • Farbstein D, Blum S, Pollak M et al. Vitamin E therapy results in a reduction in HDL function in individuals with diabetes and the haptoglobin 2-1 genotype. Atherosclerosis219(1), 240–244 (2011).
  • Milman U, Blum S, Shapira C et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both Type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler. Thromb. Vasc. Biol.28(2), 341–347 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.