46
Views
16
CrossRef citations to date
0
Altmetric
Editorial

Insulin resistance in Type 2 diabetes and obesity: implications for endothelial function

&
Pages 403-407 | Published online: 10 Jan 2014

References

  • Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract.87, 4–14 (2010).
  • Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet368, 29–36 (2006).
  • Madala MC, Franklin BA, Chen AY et al. Obesity and age of first non-ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol.52, 979–985 (2008).
  • Pyorala M, Miettinen H, Laakso M, Pyorala K. Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study. Circulation98, 398–404 (1998).
  • Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation113, 1888–1904 (2006).
  • Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J. Clin. Invest.100, 2153–2157 (1997).
  • Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation101, 1899–1906 (2000).
  • Laine H, Yki-Jarvinen H, Kirvela O et al. Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity. J. Clin. Invest.101, 1156–1162 (1998).
  • Steinberg HO Chaker H, Leaming R et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J. Clin. Invest.97, 2601–2610 (1996).
  • Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Am. Coll. Cardiol.27, 567–574 (1996).
  • Williams IL, Chowienczyk PJ, Wheatcroft SB et al. Endothelial function and weight loss in obese humans. Obes. Surg.15, 1055–1060 (2005).
  • Balletshofer BM, Rittig K, Enderle MD et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with Type 2 diabetes in association with insulin resistance. Circulation101, 1780–1784 (2000).
  • Murphy C, Kanaganayagam GS, Jiang B et al. Vascular dysfunction and reduced circulating endothelial progenitor cells in young healthy UK South Asian men. Arterioscler. Thromb. Vasc. Biol.27, 936–942 (2007).
  • Stern MP. Diabetes and cardiovascular disease. The ‘common soil’ hypothesis. Diabetes44, 369–374 (1995).
  • Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem.278, 45021–45026 (2003).
  • Zhang H, Park Y, Zhang C. Coronary and aortic endothelial function affected by feedback between adiponectin and tumor necrosis factor-α in Type 2 diabetic mice. Arterioscler. Thromb. Vasc. Biol.30, 2156–2163 (2010).
  • Hotamisligil GS. Inflammation and metabolic disorders. Nature444, 860–867 (2006).
  • Bhagat K. Vallance P. Inflammatory cytokines impair endothelium-dependent dilatation in human veins in vivo. Circulation96, 3042–3047 (1997).
  • Wang P, Ba ZF, Chaudry IH. Administration of tumor necrosis factor-α in vivo depresses endothelium-dependent relaxation. Am. J. Physiol.266, 2535–2541 (1994).
  • Barbarroja N, López-Pedrera R, Mayas MD et al. The obese healthy paradox: is inflammation the answer? Biochem. J.430, 141–149 (2010).
  • Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes46, 3–10 (1997).
  • Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim. Biophys. Acta1801(3), 338–349 (2010).
  • Roden M, Price TB, Perseghin G et al. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest.97(12), 2859–2865 (1996).
  • Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nat. Med.16, 400–402 (2010).
  • de Man FH, Weverling-Rijnsburger AW, van der Laarse A. Not acute but chronic hypertriglyceridemia is associated with impaired endothelium-dependent vasodilation: reversal after lipid-lowering therapy by atorvastatin. Arterioscler. Thromb. Vasc. Biol.20, 744–750 (2000).
  • Steinberg HO, Tarshoby M, Monestel R et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J. Clin. Invest.100, 1230–1239 (1997).
  • Davda RK, Stepniakowski KT, Lu G et al. Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension26(5), 764–770 (1995).
  • Inoguchi T, Li P, Umeda F et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes49, 1939–1945 (2000).
  • Kuboki K, Jiang ZY, Takahara N et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation101, 676–681 (2000).
  • Dimmeler S, Fleming I, Fisslthaler B et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature399, 601–605 (1999).
  • Kanai F, Ito K, Todaka M et al. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem. Biophys. Res. Commun.195, 762–768 (1993).
  • Bjornholm M, Kawano Y, LehtihetM, Zierath JR. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes46, 524–527 (1997).
  • Cusi K, Maezono K, Osman A et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J. Clin. Invest.105, 311–320 (2000).
  • Montagnani M, Quon MJ. Insulin action in vascular endothelium: potential mechanisms linking insulin resistance with hypertension. Diabetes Obes. Metab.2, 285–292 (2000).
  • Jiang ZY, Lin YW, Clemont A et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J. Clin. Invest.104(4), 447–457 (1999).
  • Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation113, 1888–1904 (2006).
  • Duncan ER, Walker SJ, Ezzat VA et al. Accelerated endothelial dysfunction in mild prediabetic insulin resistance: the early role of reactive oxygen species. Am. J. Physiol. Endocrinol. Metab.293, E1311–E1319 (2007).
  • Wheatcroft SB, Shah AM, Li JM et al. Preserved glucoregulation but attenuation of the vascular actions of insulin in mice heterozygous for knockout of the insulin receptor. Diabetes53(10), 2645–2652 (2004).
  • Symons JD, McMillin SL, Riehle C et al. Contribution of insulin and Akt1 signaling to endothelial nitric oxide synthase in the regulation of endothelial function and blood pressure. Circ. Res.104(9), 1085–1094 (2009).
  • Duncan ER, Crossey PA, Walker S et al. The effect of endothelium specific insulin resistance on endothelial function in vivo. Diabetes57, 3307–3314 (2008).
  • Vicent D, Ilany J, Kondo T et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J. Clin. Invest.111, 1373–1380 (2003).
  • Gage M, Yuldasheva N, Jackson C et al. Endothelial specific insulin resistance promotes the development of atherosclerosis. Circulation122(A17990), 11 (2010).
  • Rask-Madsen C, Li Q, Freund B et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab.11, 379–389 (2010).
  • Alp NJ, Channon KM, Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler. Thromb. Vasc. Biol.24, 413–420 (2004).
  • Alp NJ, Mussa S, Khoo J et al. Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J. Clin. Invest.112, 725–735 (2003).
  • Silver AE, Beske SD, Christou DD et al. Overweight and obese humans demonstrate increased vascular endothelial NAD(P)H oxidase-p47(phox) expression and evidence of endothelial oxidative stress. Circulation115, 627–637 (2007).
  • Fortuño A, San José G, Moreno MU et al. Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome. Diabetes55(1), 209–215 (2006).
  • Guzik TJ, Mussa S, Gastaldi D et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation105, 1656–1662 (2002).
  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med.192, 1001–1014 (2000).
  • Dimmeler S. Zeiher AM. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J. Mol. Med.82, 671–677 (2004).
  • Heida NM, Müller JP, Cheng IF. Effects of obesity and weight loss on the functional properties of early outgrowth endothelial progenitor cells. J. Am. Coll. Cardiol.55, 357–367 (2010).
  • Tobler K, Freudenthaler A, Baumgartner-Parzer SM et al. Reduction of both number and proliferative activity of human endothelial progenitor cells in obesity. Int. J. Obes.34, 687–700 (2010).
  • Sorrentino SA, Bahlmann FH, Besler C et al. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with Type 2 diabetes mellitus – restoration by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. Circulation117(10), 163–173 (2007).
  • Tepper OM, Galiano RD, Capla JM et al. Human endothelial progenitor cells from Type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation106(22), 2781–2786 (2002).
  • Ii M, Takenaka H, Asai J et al. Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in re-endothelialization following arterial injury. Circ. Res.98(5), 697–704 (2006).
  • Kahn MB, Yuldasheva NY, Cubbon RM et al. Insulin resistance impairs circulating angiogenic progenitor cell function and delays endothelial regeneration. Diabetes DOI: 10.2337/db10-1080 (2011) (Epub ahead of print).
  • Cubbon RM, Cubbon RM, Wheatcroft SB et al. Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3000 patients between 1995 and 2003. Eur. Heart J.28(5), 540–545 (2007).
  • Gerstein HC, Miller ME, Gerstein HC et al.; Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in Type 2 diabetes. N. Engl. J. Med.358(24), 2545–2559 (2008).
  • Patel A, MacMahon S, Chalmers J et al.; ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with Type 2 diabetes. N. Engl. J. Med.358, 2560–2572 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.