264
Views
37
CrossRef citations to date
0
Altmetric
Theme: Inflammation & Infection - Review

Cardiospheres and cardiosphere-derived cells as therapeutic agents following myocardial infarction

, , &
Pages 1185-1194 | Published online: 10 Jan 2014

References

  • Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6), 763–776 (2003).
  • Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95(9), 911–921 (2004).
  • Oh H, Bradfute SB, Gallardo TD et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA 100(21), 12313–12318 (2003).
  • Deisher TA. Cardiac-derived stem cells. IDrugs 3(6), 649–653 (2000).
  • Bergmann O, Bhardwaj RD, Bernard S et al. Evidence for cardiomyocyte renewal in humans. Science 324(5923), 98–102 (2009).
  • Makkar RR, Smith RR, Cheng K et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised Phase 1 trial. Lancet 379(9819), 895–904 (2012).
  • Smith RR, Barile L, Cho HC et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7), 896–908 (2007).
  • D’Amario D, Fiorini C, Campbell PM et al. Functionally competent cardiac stem cells can be isolated from endomyocardial biopsies of patients with advanced cardiomyopathies. Circ. Res. 108(7), 857–861 (2011).
  • Malliaras K, Li TS, Luthringer D et al. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125(1), 100–112 (2012).
  • Cheng K, Malliaras K, Smith RR et al. Human cardiosphere-derived cells from advanced heart failure patients exhibit augmented functional potency in a mouse model of myocardial infarction. Circulation 124(Suppl. 21), Abstract A17146 (2011).
  • Tseliou E, Malliaras K, Terrovitis J, et al. Allogeneic cardiospheres boost cardiac function and attenuate adverse remodeling without eliciting immune reactions post-myocardial infarction in immunologically mismatched rat strains. Circulation 124(Suppl. 21), Abstract A16677 (2011).
  • Blusztajn A, Valle I, Kreke M, Marban L, Smith RR. Allogeneic human cardiosphere-derived cells made from unused transplant hearts. Circulation 124(Suppl. 21), Abstract 26382 (2011).
  • Reynolds BA, Rietze RL. Neural stem cells and neurospheres – re-evaluating the relationship. Nat. Methods 2(5), 333–336 (2005).
  • Cheng K, Blusztajn A, Shen D et al. Enhanced engraftment and therapeutic benefit of human cardiosphere-derived cells delivered in an in situ polymerizable hydrogel. Circulation 124(Suppl. 21), Abstract A17267 (2011).
  • Cheng K, Li TS, Malliaras K, Davis DR, Zhang Y, Marbán E. Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ. Res. 106(10), 1570–1581 (2010).
  • Chimenti I, Smith RR, Li TS et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res. 106(5), 971–980 (2010).
  • Davis DR, Kizana E, Terrovitis J et al. Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. J. Mol. Cell. Cardiol. 49(2), 312–321 (2010).
  • Davis DR, Ruckdeschel Smith R, Marbán E. Human cardiospheres are a source of stem cells with cardiomyogenic potential. Stem Cells 28(5), 903–904 (2010).
  • Davis DR, Zhang Y, Smith RR et al. Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. PLoS ONE 4(9), e7195 (2009).
  • Fabrizi C, Angelini F, Chimenti I et al. Thrombin and thrombin-derived peptides promote proliferation of cardiac progenitor cells in the form of cardiospheres without affecting their differentiation potential. J. Biol. Regul. Homeost. Agents 25(Suppl. 2), S43–S51 (2011).
  • Gaetani R, Ledda M, Barile L et al. Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc. Res. 82(3), 411–420 (2009).
  • Lee ST, White AJ, Matsushita S et al. Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J. Am. Coll. Cardiol. 57(4), 455–465 (2011).
  • Li TS, Cheng K, Lee ST et al. Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28(11), 2088–2098 (2010).
  • Li TS, Cheng K, Malliaras K et al. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J. Am. Coll. Cardiol. 59(10), 942–953 (2012).
  • Li TS, Marbán E. Physiological levels of reactive oxygen species are required to maintain genomic stability in stem cells. Stem Cells 28(7), 1178–1185 (2010).
  • Smith RR, Chimenti I, Marban E. Unselected human cardiosphere-derived cells are functionally superior to c-Kit- or CD90-purified cardiosphere-derived cells. Circulation 118(18), S420–S420 (2008).
  • Xie Y, Cheng K, Cho HC et al. Human cardiosphere-derived cells stimulate cardiomyocyte proliferation in vivo and in co-culture. Circulation 124(Suppl. 21), Abstract A16688 (2011).
  • Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol. Med. 18(2), 128–134 (2012).
  • Tipnis S, Viswanathan C, Majumdar AS. Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol. Cell Biol. 88(8), 795–806 (2010).
  • Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun. Rev. 10(7), 410–415 (2011).
  • Batten P, Rosenthal NA, Yacoub MH. Immune response to stem cells and strategies to induce tolerance. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 362(1484), 1343–1356 (2007).
  • Bassi EJ, Aita CA, Câmara NO. Immune regulatory properties of multipotent mesenchymal stromal cells: where do we stand? World J. Stem Cells 3(1), 1–8 (2011).
  • Atoui R, Shum-Tim D, Chiu RC. Myocardial regenerative therapy: immunologic basis for the potential ‘universal donor cells’. Ann. Thorac. Surg. 86(1), 327–334 (2008).
  • Forsyth NR, Musio A, Vezzoni P, Simpson AH, Noble BS, McWhir J. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells 8(1), 16–23 (2006).
  • Ueyama H, Horibe T, Hinotsu S et al. Chromosomal variability of human mesenchymal stem cells cultured under hypoxic conditions. J. Cell. Mol. Med. 16(1), 72–82 (2012).
  • Chambers I, Colby D, Robertson M et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5), 643–655 (2003).
  • Riekstina U, Cakstina I, Parfejevs V et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 5(4), 378–386 (2009).
  • Ambady S, Malcuit C, Kashpur O et al. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int. J. Dev. Biol. 54(11–12), 1743–1754 (2010).
  • Strauer BE, Brehm M, Zeus T et al. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch. Med. Wochenschr. 126(34–35), 932–938 (2001).
  • Johnston PV, Sasano T, Mills K et al. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120(12), 1075–1083, 7 p following 1083 (2009).
  • Terrovitis J, Lautamäki R, Bonios M et al. Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J. Am. Coll. Cardiol. 54(17), 1619–1626 (2009).
  • Gnecchi M, He H, Noiseux N et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20(6), 661–669 (2006).
  • Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103(11), 1204–1219 (2008).
  • Tang XL, Rokosh G, Sanganalmath SK et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121(2), 293–305 (2010).
  • Bolli R, Chugh AR, D’Amario D et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised Phase 1 trial. Lancet 378(9806), 1847–1857 (2011).
  • Takamiya M, Haider KH, Ashraf M. Identification and characterization of a novel multipotent sub-population of Sca-1? Cardiac progenitor cells for myocardial regeneration. PLoS ONE 6(9), e25265 (2011).
  • Tateishi K, Ashihara E, Takehara N et al. Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J. Cell. Sci. 120(Pt 10), 1791–1800 (2007).
  • Ye J, Boyle A, Shih H et al. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. PLoS ONE 7(1), e30329 (2012).
  • Laugwitz KL, Moretti A, Lam J et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026), 647–653 (2005).
  • Haag M, Van Linthout S, Schröder SE et al. Endomyocardial biopsy derived adherent proliferating cells – a potential cell source for cardiac tissue engineering. J. Cell. Biochem. 109(3), 564–575 (2010).
  • Mishra R, Vijayan K, Colletti EJ et al. Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation 123(4), 364–373 (2011).
  • Zakharova L, Mastroeni D, Mutlu N et al. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc. Res. 87(1), 40–49 (2010).
  • Bearzi C, Rota M, Hosoda T et al. Human cardiac stem cells. Proc. Natl Acad. Sci. USA 104(35), 14068–14073 (2007).
  • Carr CA, Stuckey DJ, Tan JJ et al. Cardiosphere-derived cells improve function in the infarcted rat heart for at least 16 weeks – an MRI study. PLoS ONE 6(10), e25669 (2011).
  • Li TS, Cheng K, Malliaras K et al. Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair. Cardiovasc. Res. 89(1), 157–165 (2011).
  • He JQ, Vu DM, Hunt G, Chugh A, Bhatnagar A, Bolli R. Human cardiac stem cells isolated from atrial appendages stably express c-kit. PLoS ONE 6(11), e27719 (2011).
  • Leenders JJ, Wijnen WJ, van der Made I et al. Repression of cardiac hypertrophy by KLF15: underlying mechanisms and therapeutic implications. PLoS ONE 7(5), e36754 (2012).
  • Li Q, Guo Y, Ou Q et al. Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Res. Cardiol. 106(5), 849–864 (2011).
  • Li Z, Lee A, Huang M et al. Imaging survival and function of transplanted cardiac resident stem cells. J. Am. Coll. Cardiol. 53(14), 1229–1240 (2009).
  • Beitnes JO, Gjesdal O, Lunde K et al. Left ventricular systolic and diastolic function improve after acute myocardial infarction treated with acute percutaneous coronary intervention, but are not influenced by intracoronary injection of autologous mononuclear bone marrow cells: a 3 year serial echocardiographic sub-study of the randomized-controlled ASTAMI study. Eur. J. Echocardiogr. 12(2), 98–106 (2011).
  • Beitnes JO, Hopp E, Lunde K et al. Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study. Heart 95(24), 1983–1989 (2009).
  • Perin EC, Willerson JT, Pepine CJ et al.; Cardiovascular Cell Therapy Research Network (CCTRN). Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307(16), 1717–1726 (2012).
  • Roncalli J, Mouquet F, Piot C et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur. Heart J. 32(14), 1748–1757 (2011).
  • Schächinger V, Assmus B, Erbs S et al.; REPAIR-AMI investigators. Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: insights from the reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction (REPAIR-AMI) trial. Eur. J. Heart Fail. 11(10), 973–979 (2009).
  • Schaefer A, Zwadlo C, Fuchs M et al. Long-term effects of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: 5-year results from the randomized-controlled BOOST trial – an echocardiographic study. Eur. J. Echocardiogr. 11(2), 165–171 (2010).
  • Silva SA, Sousa AL, Haddad AF et al. Autologous bone-marrow mononuclear cell transplantation after acute myocardial infarction: comparison of two delivery techniques. Cell Transplant. 18(3), 343–352 (2009).
  • Traverse JH, Henry TD, Ellis SG et al.; Cardiovascular Cell Therapy Research Network. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306(19), 2110–2119 (2011).
  • Traverse JH, McKenna DH, Harvey K et al. Results of a Phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am. Heart J. 160(3), 428–434 (2010).
  • van der Laan A, Hirsch A, Nijveldt R et al. Bone marrow cell therapy after acute myocardial infarction: the HEBE trial in perspective, first results. Neth. Heart J. 16(12), 436–439 (2008).
  • Ahmadi H, Farahani MM, Kouhkan A et al. Five-year follow-up of the local autologous transplantation of CD133+ enriched bone marrow cells in patients with myocardial infarction. Arch. Iran. Med. 15(1), 32–35 (2012).
  • Bartunek J, Vanderheyden M, Vandekerckhove B et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 112(Suppl. 9), I178–I183 (2005).
  • Colombo A, Castellani M, Piccaluga E et al. Myocardial blood flow and infarct size after CD133+ cell injection in large myocardial infarction with good recanalization and poor reperfusion: results from a randomized controlled trial. J. Cardiovasc. Med. (Hagerstown) 12(4), 239–248 (2011).
  • De La Fuente LM, Stertzer SH, Argentieri J et al. Transendocardial autologous bone marrow in myocardial infarction induced heart failure, two-year follow-up in an open-label Phase I safety study (the TABMMI study). EuroIntervention 7(7), 805–812 (2011).
  • Karatasakis G, Leontiadis E, Peristeri I et al. Intracoronary infusion of selected autologous bone marrow stem cells improves longitudinal myocardial strain and strain rate in patients with old anterior myocardial infarction without recent revascularization. Eur. J. Echocardiogr. 11(5), 440–445 (2010).
  • Klein HM, Ghodsizad A, Marktanner R et al. Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery. Heart Surg. Forum 10(1), E66–E69 (2007).
  • Losordo DW, Henry TD, Davidson C et al.; ACT34-CMI Investigators. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ. Res. 109(4), 428–436 (2011).
  • Mansour S, Roy DC, Bouchard V et al. COMPARE-AMI trial: comparison of intracoronary injection of CD133+ bone marrow stem cells to placebo in patients after acute myocardial infarction and left ventricular dysfunction: study rationale and design. J. Cardiovasc. Transl. Res. 3(2), 153–159 (2010).
  • Santoso T, Irawan C, Alwi I et al. Safety and feasibility of combined granulocyte colony stimulating factor and erythropoetin based-stem cell therapy using intracoronary infusion of peripheral blood stem cells in patients with recent anterior myocardial infarction: one-year follow-up of a Phase 1 study. Acta Med. Indones. 43(2), 112–121 (2011).
  • Turan RG, Bozdag-Turan I, Ortak J et al. Improved mobilization of the CD34(+) and CD133(+) bone marrow-derived circulating progenitor cells by freshly isolated intracoronary bone marrow cell transplantation in patients with ischemic heart disease. Stem Cells Dev. 20(9), 1491–1501 (2011).
  • Houtgraaf JH, den Dekker WK, van Dalen BM et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 59(5), 539–540 (2012).
  • Chen SL, Fang WW, Qian J et al. Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin. Med. J. 117(10), 1443–1448 (2004).
  • Friis T, Haack-Sørensen M, Mathiasen AB et al. Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scand. Cardiovasc. J. 45(3), 161–168 (2011).
  • Hare JM, Traverse JH, Henry TD et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54(24), 2277–2286 (2009).
  • Katritsis DG, Sotiropoulou PA, Karvouni E et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter. Cardiovasc. Interv. 65(3), 321–329 (2005).
  • Mohyeddin-Bonab M, Mohamad-Hassani MR, Alimoghaddam K et al. Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Arch. Iran. Med. 10(4), 467–473 (2007).
  • Tendera M, Wojakowski W, Ruzyllo W et al.; REGENT Investigators. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur. Heart J. 30(11), 1313–1321 (2009).
  • Wu E, Ortiz JT, Tejedor P et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart 94(6), 730–736 (2008).
  • Clifford DM, Fisher SA, Brunskill SJ et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst. Rev. 2, CD006536 (2012).
  • Assmus B, Rolf A, Erbs S et al.; REPAIR-AMI Investigators. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ. Heart Fail. 3(1), 89–96 (2010).
  • Janssens S, Dubois C, Bogaert J et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505), 113–121 (2006).
  • Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 113(10), 1287–1294 (2006).
  • Dill T, Schächinger V, Rolf A et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am. Heart J. 157(3), 541–547 (2009).
  • Hirsch A, Nijveldt R, van der Vleuten PA et al.; HEBE Investigators. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur. Heart J. 32(14), 1736–1747 (2011).
  • Wöhrle J, Merkle N, Mailänder V et al. Results of intracoronary stem cell therapy after acute myocardial infarction. Am. J. Cardiol. 105(6), 804–812 (2010).
  • Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355(12), 1199–1209 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.