296
Views
13
CrossRef citations to date
0
Altmetric
Theme: Thrombosis - Review

The complex puzzle underlying the pathophysiology of acute coronary syndromes: from molecular basis to clinical manifestations

, , , , &
Pages 1533-1543 | Published online: 10 Jan 2014

References

  • Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104(22), 2746–2753 (2001).
  • Viles-Gonzalez JF, Fuster V, Badimon JJ. Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur. Heart J. 25(14), 1197–1207 (2004).
  • Fefer P, Knudtson ML, Cheema AN et al. Current perspectives on coronary chronic total occlusions: the Canadian Multicenter Chronic Total Occlusions Registry. J. Am. Coll. Cardiol. 59(11), 991–997 (2012).
  • Badimon JJ, Ibanez B, Cimmino G. Genesis and dynamics of atherosclerotic lesions: implications for early detection. Cerebrovasc. Dis. 27(Suppl. 1), 38–47 (2009).
  • Aikawa M, Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc. Pathol. 13(3), 125–138 (2004).
  • Lowe GD. Local inflammation, endothelial dysfunction and fibrinolysis in coronary heart disease. Clin. Sci. 110(3), 327–328 (2006).
  • Mallat Z, Tedgui A. Current perspective on the role of apoptosis in ­atherothrombotic disease. Circ. Res. 88(10), 998–1003 (2001).
  • Toschi V, Gallo R, Lettino M et al. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation 95(3), 594–599 (1997).
  • Hutter R, Valdiviezo C, Sauter BV et al. Caspase-3 and tissue factor expression in lipid-rich plaque macrophages: evidence for apoptosis as link between inflammation and atherothrombosis. Circulation 109(16), 2001–2008 (2004).
  • Rauch U, Osende JI, Fuster V, Badimon JJ, Fayad Z, Chesebro JH. Thrombus formation on atherosclerotic plaques: pathogenesis and clinical consequences. Ann. Intern. Med. 134(3), 224–238 (2001).
  • Sambola A, Osende J, Hathcock J et al. Role of risk factors in the modulation of tissue factor activity and blood ­thrombogenicity. Circulation 107(7), 973–977 (2003).
  • Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and ­atherosclerosis in children and young adults. The Bogalusa Heart Study. N. Engl. J. Med. 338(23), 1650–1656 (1998).
  • Nemetz PN, Roger VL, Ransom JE, Bailey KR, Edwards WD, Leibson CL. Recent trends in the prevalence of coronary disease: a population-based autopsy study of nonnatural deaths. Arch. Intern. Med. 168(3), 264–270 (2008).
  • Roger VL, Go AS, Lloyd-Jones DM et al.; American Heart Association Statistics Committee and Stroke Statistics ­Subcommittee. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation 123(4), e18–e209 (2011).
  • Smith SC Jr. Risk-reduction therapy: the challenge to change. Presented at the 68th scientific sessions of the American Heart Association November 13, 1995 Anaheim, California. Circulation 93(12), 2205–2211 (1996).
  • Hansson GK, Klareskog L. Pulling down the plug on atherosclerosis: cooling down the inflammasome. Nat. Med. 17(7), 790–791 (2011).
  • Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347), 317–325 (2011).
  • Li JJ, Jiang H, Huang CX et al. Elevated level of plasma C-reactive protein in patients with unstable angina: its relations with coronary stenosis and lipid profile. Angiology 53(3), 265–272 (2002).
  • Libby P. Inflammation in atherosclerosis. Nature 420(6917), 868–874 (2002).
  • Shah PK. Mechanisms of plaque vulnerability and rupture. J. Am. Coll. Cardiol. 41(4 Suppl. S), 15S–22S (2003).
  • Li JJ, Fang CH, Chen MZ, Chen X, Lee SW. Activation of nuclear factor-κB and correlation with elevated plasma c-reactive protein in patients with unstable angina. Heart. Lung Circ. 13(2), 173–178 (2004).
  • Li JJ, Wang HR, Huang CX, Xue JL, Li GS. Enhanced inflammatory response of blood monocytes to C-reactive protein in patients with unstable angina. Clin. Chim. Acta 352(1–2), 127–133 (2005).
  • Shah PK. Inflammation and plaque vulnerability. Cardiovasc. Drugs Ther. 23(1), 31–40 (2009).
  • Michowitz Y, Arbel Y, Wexler D et al. Predictive value of high sensitivity CRP in patients with diastolic heart failure. Int. J. Cardiol. 125(3), 347–351 (2008).
  • Suleiman M, Khatib R, Agmon Y et al. Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction predictive role of C-reactive protein. J. Am. Coll. Cardiol. 47(5), 962–968 (2006).
  • Libby P, Ridker PM. Inflammation and atherosclerosis: Role of c-reactive protein in risk assessment. Am. J. Med. 116 (Suppl. 6A), 9S–16S (2004).
  • Koenig W, Sund M, Fröhlich M et al. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. ­Circulation 99(2), 237–242 (1999).
  • Calabro P, Chang DW, Willerson JT, Yeh ET. Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: linking obesity to vascular inflammation. J. Am. Coll. Cardiol. 46(6), 1112–1113 (2005).
  • Calabró P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 108(16), 1930–1932 (2003).
  • De Rosa S, Cirillo P, Pacileo M, Di Palma V, Paglia A, Chiariello M. Leptin stimulated C-reactive protein production by human coronary artery endothelial cells. J. Vasc. Res. 46(6), 609–617 (2009).
  • Forte L, Cimmino G, Loffredo F et al. C-reactive protein is released in the coronary circulation and causes endothelial dysfunction in patients with acute coronary syndromes. Int. J. Cardiol. 152(1), 7–12 (2011).
  • Cirillo P, Golino P, Calabrò P et al. C-reactive protein induces tissue factor expression and promotes smooth muscle and endothelial cell proliferation. Cardiovasc. Res. 68(1), 47–55 (2005).
  • Hattori Y, Matsumura M, Kasai K. Vascular smooth muscle cell activation by C-reactive protein. Cardiovasc. Res. 58(1), 186–195 (2003).
  • Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 107(3), 398–404 (2003).
  • Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102(18), 2165–2168 (2000).
  • Pasceri V, Cheng JS, Willerson JT, Yeh ET, Chang J. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 103(21), 2531–2534 (2001).
  • Verma S, Wang CH, Li SH et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 106(8), 913–919 (2002).
  • Guo S, Meng S, Chen B, Liu J, Gao L, Wu Y. C-reactive protein can influence the proliferation, apoptosis, and monocyte chemotactic protein-1 production of human umbilical vein endothelial cells. DNA Cell Biol. 30(3), 157–162 (2011).
  • Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98(11), 2572–2579 (1996).
  • Cermak J, Key NS, Bach RR, Balla J, Jacob HS, Vercellotti GM. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 82(2), 513–520 (1993).
  • Xie L, Chang L, Guan Y, Wang X. C-reactive protein augments interleukin-8 secretion in human peripheral blood monocytes. J. Cardiovasc. Pharmacol. 46(5), 690–696 (2005).
  • Galve-de Rochemonteix B, Wiktorowicz K, Kushner I, Dayer JM. C-reactive protein increases production of IL-1 α, IL-1 β, and TNF-α, and expression of mrna by human alveolar macrophages. J. Leukoc. Biol. 53, 439–445 (1993).
  • Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 90(2), 775–778 (1994).
  • Kaartinen M, Penttilä A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of ­atheromatous rupture. Circulation 90(4), 1669–1678 (1994).
  • den Dekker WK, Tempel D, Bot I et al. Mast cells induce vascular smooth muscle cell apoptosis via a toll-like receptor 4 activation pathway. Arterioscler. Thromb. Vasc. Biol. 32(8), 1960–1969 (2012).
  • Doherty TM. T-cell regulation of macrophage function. Curr. Opin. Immunol. 7(3), 400–404 (1995).
  • Liuzzo G, Kopecky SL, Frye RL et al. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation 100(21), 2135–2139 (1999).
  • Nakajima T, Goek O, Zhang X et al. De novo expression of killer ­immunoglobulin-like receptors and signaling proteins regulates the cytotoxic function of CD4 T cells in acute coronary syndromes. Circ. Res. 93(2), 106–113 (2003).
  • Caligiuri G, Paulsson G, Nicoletti A, Maseri A, Hansson GK. Evidence for antigen-driven T-cell response in unstable angina. Circulation 102(10), 1114–1119 (2000).
  • De Palma R, Del Galdo F, Abbate G et al. Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation 113(5), 640–646 (2006).
  • Ketelhuth DF, Hansson GK. Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall. Thromb. Haemost. 106(5), 779–786 (2011).
  • Brereton CF, Sutton CE, Lalor SJ, Lavelle EC, Mills KH. Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease. J. Immunol. 183(3), 1715–1723 (2009).
  • Chen S, Crother TR, Arditi M. Emerging role of IL-17 in atherosclerosis. J. Innate Immun. 2(4), 325–333 (2010).
  • Cirillo P, Golino P, Piscione F et al. Transcoronary Th-17 lymphocytes and acute coronary syndromes: new evidence from the crime scene? Int. J. Cardiol. 153(2), 215–216 (2011).
  • Dahlbäck B. Blood coagulation. Lancet 355(9215), 1627–1632 (2000).
  • Ruggeri ZM. Structure and function of von Willebrand factor. Thromb. Haemost. 82(2), 576–584 (1999).
  • Jackson SP. The growing complexity of platelet aggregation. Blood 109(12), 5087–5095 (2007).
  • Coughlin SR. How the protease thrombin talks to cells. Proc. Natl Acad. Sci. USA 96(20), 11023–11027 (1999).
  • Borissoff JI, Spronk HM, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N. Engl. J. Med. 364(18), 1746–1760 (2011).
  • Renné T, Pozgajová M, Grüner S et al. Defective thrombus formation in mice lacking coagulation factor XII. J. Exp. Med. 202(2), 271–281 (2005).
  • Rosen ED, Gailani D, Castellino FJ. FXI is essential for thrombus formation following FeCl3-induced injury of the carotid artery in the mouse. Thromb. Haemost. 87(4), 774–776 (2002).
  • Müller F, Mutch NJ, Schenk WA et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139(6), 1143–1156 (2009).
  • Zito F, Lowe GD, Rumley A, McMahon AD, Humphries SE; WOSCOPS Study Group West of Scotland Coronary Prevention Study. Association of the factor XII 46C>T polymorphism with risk of coronary heart disease (CHD) in the WOSCOPS study. Atherosclerosis 165(1), 153–158 (2002).
  • Govers-Riemslag JW, Smid M, Cooper JA et al. The plasma kallikrein-kinin system and risk of cardiovascular disease in men. J. Thromb. Haemost. 5(9), 1896–1903 (2007).
  • Siegerink B, Govers-Riemslag JW, Rosendaal FR, Ten Cate H, Algra A. Intrinsic coagulation activation and the risk of arterial thrombosis in young women: results from the Risk of Arterial Thrombosis in relation to Oral contraceptives (RATIO) case-control study. Circulation 122(18), 1854–1861 (2010).
  • Frenette PS, Denis CV, Weiss L et al. P-selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J. Exp. Med. 191(8), 1413–1422 (2000).
  • Hrachovinová I, Cambien B, ­Hafezi-Moghadam A et al. Interaction of P-selectin and PSGL-1 generates ­microparticles that correct hemostasis in a mouse model of hemophilia A. Nat. Med. 9(8), 1020–1025 (2003).
  • Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol. Med. 10(4), 171–178 (2004).
  • Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive ­morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000).
  • Cheruvu PK, Finn AV, Gardner C et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J. Am. Coll. Cardiol. 50(10), 940–949 (2007).
  • Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 82(3), 265–268 (1999).
  • Stone GW, Maehara A, Lansky AJ et al.; PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364(3), 226–235 (2011).
  • Giesen PL, Rauch U, Bohrmann B et al. Blood-borne tissue factor: another view of thrombosis. Proc. Natl Acad. Sci. USA 96(5), 2311–2315 (1999).
  • Bach RR. Tissue factor encryption. Arterioscler. Thromb. Vasc. Biol. 26(3), 456–461 (2006).
  • Rao LV, Kothari H, Pendurthi UR. Tissue factor encryption and decryption: facts and controversies. Thromb. Res. 129(Suppl. 2), S13–S17 (2012).
  • Lechner D, Weltermann A. Circulating tissue factor-exposing microparticles. Thromb. Res. 122(Suppl. 1), S47–S54 (2008).
  • Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J. Biol. Chem. 166(1), 189–197 (1946).
  • Davizon P, López JA. Microparticles and thrombotic disease. Curr. Opin. Hematol. 16(5), 334–341 (2009).
  • Leroyer AS, Isobe H, Lesèche G et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J. Am. Coll. Cardiol. 49(7), 772–777 (2007).
  • Rautou PE, Leroyer AS, Ramkhelawon B et al. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ. Res. 108(3), 335–343 (2011).
  • Rauch U, Bonderman D, Bohrmann B et al. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood 96(1), 170–175 (2000).
  • Bogdanov VY, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat. Med. 9(4), 458–462 (2003).
  • van den Berg YW, Versteeg HH. ­Alternatively spliced tissue factor. A crippled protein in coagulation or a key player in non-haemostatic processes? Hamostaseologie. 30(3), 144–149 (2010).
  • Srinivasan R, Bogdanov VY. Splice variants of Tissue Factor and integrin-mediated signaling. Thromb. Res. 129(Suppl. 2), S34–S37 (2012).
  • Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U. Procoagulant soluble tissue factor is released from endothelial cells in response to ­inflammatory cytokines. Circ. Res. 96(12), 1233–1239 (2005).
  • Censarek P, Bobbe A, Grandoch M, Schrör K, Weber AA. Alternatively spliced human tissue factor (asHTF) is not pro-coagulant. Thromb. Haemost. 97(1), 11–14 (2007).
  • Hobbs JE, Zakarija A, Cundiff DL et al. Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thromb. Res. 120(Suppl. 2), S13–S21 (2007).
  • Butenas S, Orfeo T, Mann KG. Tissue factor in coagulation: Which? Where? When? Arterioscler. Thromb. Vasc. Biol. 29(12), 1989–1996 (2009).
  • Khorana AA, Francis CW, Menzies KE et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J. Thromb. Haemost. 6(11), 1983–1985 (2008).
  • Wang JG, Manly D, Kirchhofer D, Pawlinski R, Mackman N. Levels of microparticle tissue factor activity correlate with coagulation activation in endotoxemic mice. J. Thromb. Haemost. 7(7), 1092–1098 (2009).
  • Owens AP 3rd, Passam FH, Antoniak S et al. Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J. Clin. Invest. 122(2), 558–568 (2012).
  • Bogdanov VY, Cimmino G, Tardos JG, Tunstead JR, Badimon JJ. Assessment of plasma tissue factor activity in patients presenting with coronary artery disease: limitations of a commercial assay. J. Thromb. Haemost. 7(5), 894–897 (2009).
  • Cimmino G, Cirillo P, Petrillo G et al. Decreased blood-borne tissue factor activity in patients presenting with acute coronary syndrome: should the old paradigm be revisited? Circulation 122, Abstract A19396 (2010).
  • Antoniak S, Rojas M, Spring D et al. Protease-activated receptor 2 deficiency reduces cardiac ischemia/reperfusion injury. Arterioscler. Thromb. Vasc. Biol. 30(11), 2136–2142 (2010).
  • Carmeliet P, Mackman N, Moons L et al. Role of tissue factor in embryonic blood vessel development. Nature 383(6595), 73–75 (1996).
  • Randolph GJ, Luther T, Albrecht S, Magdolen V, Muller WA. Role of tissue factor in adhesion of mononuclear phagocytes to and trafficking through endothelium in vitro. Blood 92(11), 4167–4177 (1998).
  • Sato Y, Asada Y, Marutsuka K, ­Hatakeyama K, Sumiyoshi A. Tissue factor induces migration of cultured aortic smooth muscle cells. Thromb. Haemost. 75(3), 389–392 (1996).
  • Poulsen LK, Jacobsen N, Sørensen BB et al. Signal transduction via the mitogen-activated protein kinase pathway induced by binding of coagulation factor VIIa to tissue factor. J. Biol. Chem. 273(11), 6228–6232 (1998).
  • Pendurthi UR, Alok D, Rao LV. Binding of factor VIIa to tissue factor induces alterations in gene expression in human fibroblast cells: up-regulation of poly(A) polymerase. Proc. Natl Acad. Sci. USA 94(23), 12598–12603 (1997).
  • Taniguchi T, Kakkar AK, Tuddenham EG, Williamson RC, Lemoine NR. Enhanced expression of urokinase receptor induced through the tissue factor-factor VIIa pathway in human pancreatic cancer. Cancer Res. 58(19), 4461–4467 (1998).
  • Camerer E, Gjernes E, Wiiger M, Pringle S, Prydz H. Binding of factor VIIa to tissue factor on keratinocytes induces gene expression. J. Biol. Chem. 275(9), 6580–6585 (2000).
  • Cirillo P, Calì G, Golino P et al. Tissue factor binding of activated factor VII triggers smooth muscle cell proliferation via extracellular signal-regulated kinase activation. Circulation 109(23), 2911–2916 (2004).
  • Golino P, Ragni M, Cirillo P et al. Effects of tissue factor induced by oxygen free radicals on coronary flow during reperfusion. Nat. Med. 2(1), 35–40 (1996).
  • Chin BS, Blann AD, Gibbs CR, Chung NA, Conway DG, Lip GY. Prognostic value of interleukin-6, plasma viscosity, fibrinogen, von Willebrand factor, tissue factor and vascular endothelial growth factor levels in congestive heart failure. Eur. J. Clin. Invest. 33(11), 941–948 (2003).
  • Moertl D, Berger R, Hammer A et al. Dose-dependent decrease of platelet activation and tissue factor by omega-3 polyunsaturated fatty acids in patients with advanced chronic heart failure. Thromb. Haemost. 106(3), 457–465 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.