147
Views
4
CrossRef citations to date
0
Altmetric
Theme: Pediatric & Geriatric Cardiology - Review

Biomarkers in congenital heart disease: do natriuretic peptides hold the key?

&
Pages 773-784 | Published online: 10 Jan 2014

References

  • Hoffman JI, Kaplan S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39(12), 1890–1900 (2002).
  • van der Linde D, Konings EE, Slager MA et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 58(21), 2241–2247 (2011).
  • Oechslin EN, Harrison DA, Connelly MS, Webb GD, Siu SC. Mode of death in adults with congenital heart disease. Am. J. Cardiol. 86(10), 1111–1116 (2000).
  • Maisel AS, Krishnaswamy P, Nowak RM et al.; Breathing Not Properly Multinational Study Investigators. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 347(3), 161–167 (2002).
  • Saremi A, Gopal D, Maisel AS. Brain natriuretic peptide-guided therapy in the inpatient management of decompensated heart failure. Expert Rev. Cardiovasc. Ther. 10(2), 191–203 (2012).
  • Taub PR, Gabbai-Saldate P, Maisel A. Biomarkers of heart failure. Congest. Heart Fail. 16(Suppl. 1), S19–S24 (2010).
  • Cohn JN, Levine TB, Olivari MT et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311(13), 819–823 (1984).
  • Pousset F, Isnard R, Lechat P et al. Prognostic value of plasma endothelin-1 in patients with chronic heart failure. Eur. Heart J. 18(2), 254–258 (1997).
  • Sharma R, Bolger AP, Li W et al. Elevated circulating levels of inflammatory cytokines and bacterial endotoxin in adults with congenital heart disease. Am. J. Cardiol. 92(2), 188–193 (2003).
  • Clark AL, Poole-Wilson PA, Coats AJ. Exercise limitation in chronic heart failure: central role of the periphery. J. Am. Coll. Cardiol. 28(5), 1092–1102 (1996).
  • Coats AJ. The ‘muscle hypothesis’ of chronic heart failure. J. Mol. Cell. Cardiol. 28(11), 2255–2262 (1996).
  • Prieto LR, Hordof AJ, Secic M, Rosenbaum MS, Gersony WM. Progressive tricuspid valve disease in patients with congenitally corrected transposition of the great arteries. Circulation 98(10), 997–1005 (1998).
  • Bolger AP, Sharma R, Li W et al. Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation 106(1), 92–99 (2002).
  • Clerico A, Recchia FA, Passino C, Emdin M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am. J. Physiol. Heart Circ. Physiol. 290(1), H17–H29 (2006).
  • Baggish AL, van Kimmenade RR, Januzzi JL Jr. The differential diagnosis of an elevated amino-terminal pro-B-type natriuretic peptide level. Am. J. Cardiol. 101(3A), 43–48 (2008).
  • Almog Y, Novack V, Megralishvili R et al. Plasma level of N terminal pro-brain natriuretic peptide as a prognostic marker in critically ill patients. Anesth. Analg. 102(6), 1809–1815 (2006).
  • Brueckmann M, Huhle G, Lang S et al. Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 112(4), 527–534 (2005).
  • Roch A, Allardet-Servent J, Michelet P et al. NH2 terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients. Crit. Care Med. 33(5), 1001–1007 (2005).
  • Yoshimura M, Yasue H, Okumura K et al. Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation 87(2), 464–469 (1993).
  • Cantinotti M, Storti S, Murzi B, Clerico A, Bibhuti BD. Clinical relevance of different B-type natriuretic peptide decisional cutoff values for the diagnosis of congenital heart disease in the first weeks of life. Pediatr. Cardiol. 32, 537–538 (2011).
  • Law YM, Hoyer AW, Reller MD, Silberbach M. Accuracy of plasma B-type natriuretic peptide to diagnose significant cardiovascular disease in children: the Better Not Pout Children! Study. J. Am. Coll. Cardiol. 54(15), 1467–1475 (2009).
  • Lang Re, Unger T, Ganten D, Weil J, Bidlingmaier F, Dohlemann D. α atrial natriuretic peptide concentrations in plasma of children with congenital heart and pulmonary diseases. Br. Med. J. (Clin. Res. Ed.) 291(6504), 1241 (1985).
  • Ishikawa S, Miyauchi T, Sakai S et al. Elevated levels of plasma endothelin-1 in young patients with pulmonary hypertension caused by congenital heart disease are decreased after successful surgical repair. J. Thorac. Cardiovasc. Surg. 110(1), 271–273 (1995).
  • Kikuchi K, Nishioka K, Ueda T et al. Relationship between plasma atrial natriuretic polypeptide concentration and hemodynamic measurements in children with congenital heart diseases. J. Pediatr. 111(3), 335–342 (1987).
  • Suda K, Matsumura M, Matsumoto M. Clinical implication of plasma natriuretic peptides in children with ventricular septal defect. Pediatr. Int. 45(3), 249–254 (2003).
  • Iivainen TE, Groundstroem KW, Lahtela JT, Talvensaari TJ, Pasternack A, Uusitalo A. Serum N-terminal atrial natriuretic peptide in adult patients late after surgical repair of atrial septal defect. Eur. J. Heart Fail. 2(2), 161–165 (2000).
  • Tulevski II, Groenink M, van Der Wall EE et al. Increased brain and atrial natriuretic peptides in patients with chronic right ventricular pressure overload: correlation between plasma neurohormones and right ventricular dysfunction. Heart 86(1), 27–30 (2001).
  • Festa P, Ait-Ali L, Prontera C et al. Amino-terminal fragment of pro-brain natriuretic hormone identifies functional impairment and right ventricular overload in operated tetralogy of Fallot patients. Pediatr. Cardiol. 28(5), 339–345 (2007).
  • Adrogué HJ, Madias NE. Hyponatremia. N. Engl. J. Med. 342(21), 1581–1589 (2000).
  • Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC. Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation 80(2), 299–305 (1989).
  • Upadhyay A, Jaber BL, Madias NE. Incidence and prevalence of hyponatremia. Am. J. Med. 119(7 Suppl. 1), S30–S35 (2006).
  • De Luca L, Orlandi C, Udelson JE, Fedele F, Gheorghiade M. Overview of vasopressin receptor antagonists in heart failure resulting in hospitalization. Am. J. Cardiol. 96(12A), 24L–33L (2005).
  • Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. N. Engl. J. Med. 356(20), 2064–2072 (2007).
  • LeJemtel TH, Serrano C. Vasopressin dysregulation: hyponatremia, fluid retention and congestive heart failure. Int. J. Cardiol. 120(1), 1–9 (2007).
  • Lilly LS, Dzau VJ, Williams GH, Rydstedt L, Hollenberg NK. Hyponatremia in congestive heart failure: implications for neurohumoral activation and responses to orthostasis. J. Clin. Endocrinol. Metab. 59(5), 924–930 (1984).
  • Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N. Engl. J. Med. 341(8), 577–585 (1999).
  • Francis GS, Benedict C, Johnstone DE et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 82(5), 1724–1729 (1990).
  • Lee CR, Watkins ML, Patterson JH et al. Vasopressin: a new target for the treatment of heart failure. Am. Heart J. 146(1), 9–18 (2003).
  • Sanghi P, Uretsky BF, Schwarz ER. Vasopressin antagonism: a future treatment option in heart failure. Eur. Heart J. 26(6), 538–543 (2005).
  • Dimopoulos K, Diller GP, Petraco R et al. Hyponatraemia: a strong predictor of mortality in adults with congenital heart disease. Eur. Heart J. 31(5), 595–601 (2010).
  • Diller GP, Dimopoulos K, Okonko D et al. Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation 112(6), 828–835 (2005).
  • Dimopoulos K, Diller GP, Piepoli MF, Gatzoulis MA. Exercise intolerance in adults with congenital heart disease. Cardiol. Clin. 24(4), 641–660, vii (2006).
  • Dimopoulos K, Okonko DO, Diller GP et al. Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation 113(24), 2796–2802 (2006).
  • Hasper D, Hummel M, Kleber FX, Reindl I, Volk HD. Systemic inflammation in patients with heart failure. Eur. Heart J. 19(5), 761–765 (1998).
  • Ashraf SS, Tian Y, Zacharrias S, Cowan D, Martin P, Watterson K. Effects of cardiopulmonary bypass on neonatal and paediatric inflammatory profiles. Eur. J. Cardiothorac. Surg. 12(6), 862–868 (1997).
  • Seghaye M, Duchateau J, Bruniaux J et al. Interleukin-10 release related to cardiopulmonary bypass in infants undergoing cardiac operations. J. Thorac. Cardiovasc. Surg. 111(3), 545–553 (1996).
  • Lequier LL, Nikaidoh H, Leonard SR et al. Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest 117(6), 1706–1712 (2000).
  • Casey WF, Hauser GJ, Hannallah RS, Midgley FM, Khan WN. Circulating endotoxin and tumor necrosis factor during pediatric cardiac surgery. Crit. Care Med. 20(8), 1090–1096 (1992).
  • Giannakoulas G, Dimopoulos K, Bolger AP et al. Usefulness of natriuretic peptide levels to predict mortality in adults with congenital heart disease. Am. J. Cardiol. 105(6), 869–873 (2010).
  • Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 95(12), 2660–2667 (1997).
  • Mehra MR, Kobashigawa J, Starling R et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates – 2006. J. Heart Lung Transplant. 25(9), 1024–1042 (2006).
  • Berger R, Huelsmann M, Strecker K et al. Neurohormonal risk stratification for sudden death and death owing to progressive heart failure in chronic heart failure. Eur. J. Clin. Invest. 35(1), 24–31 (2005).
  • Hillege HL, Girbes AR, de Kam PJ et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation 102(2), 203–210 (2000).
  • Vonder Muhll I, Liu P, Webb G. Applying standard therapies to new targets: the use of ACE inhibitors and B-blockers for heart failure in adults with congenital heart disease. Int. J. Cardiol. 97(Suppl. 1), 25–33 (2004).
  • Alehan D, Ozkutlu S. Beneficial effects of 1-year captopril therapy in children with chronic aortic regurgitation who have no symptoms. Am. Heart J. 135(4), 598–603 (1998).
  • Heragu N, Mahony L. Is captopril useful in decreasing pleural drainage in children after modified Fontan operation? Am. J. Cardiol. 84(9), 1109–1112, A10 (1999).
  • Kouatli AA, Garcia JA, Zellers TM, Weinstein EM, Mahony L. Enalapril does not enhance exercise capacity in patients after Fontan procedure. Circulation 96(5), 1507–1512 (1997).
  • Dore A, Houde C, Chan KL et al. Angiotensin receptor blockade and exercise capacity in adults with systemic right ventricles: a multicenter, randomized, placebo-controlled clinical trial. Circulation 112(16), 2411–2416 (2005).
  • Hechter SJ, Fredriksen PM, Liu P et al. Angiotensin-converting enzyme inhibitors in adults after the Mustard procedure. Am. J. Cardiol. 87(5), 660–663, A11 (2001).
  • Lester SJ, McElhinney DB, Viloria E et al. Effects of losartan in patients with a systemically functioning morphologic right ventricle after atrial repair of transposition of the great arteries. Am. J. Cardiol. 88(11), 1314–1316 (2001).
  • Therrien J, Provost Y, Harrison J, Connelly M, Kaemmerer H, Webb GD. Effect of angiotensin receptor blockade on systemic right ventricular function and size: a small, randomized, placebo-controlled study. Int. J. Cardiol. 129(2), 187–192 (2008).
  • Tutarel O, Meyer GP, Bertram H, Wessel A, Schieffer B, Westhoff-Bleck M. Safety and efficiency of chronic ACE inhibition in symptomatic heart failure patients with a systemic right ventricle. Int. J. Cardiol. 154(1), 14–16 (2012).
  • Buchhorn R, Hulpke-Wette M, Hilgers R, Bartmus D, Wessel A, Bürsch J. Propranolol treatment of congestive heart failure in infants with congenital heart disease: the CHF-PRO-INFANT trial. Congestive heart failure in infants treated with propanol. Int. J. Cardiol. 79(2–3), 167–173 (2001).
  • Buchhorn R, Bartmus D, Siekmeyer W, Hulpke-Wette M, Schulz R, Bürsch J. β-blocker therapy of severe congestive heart failure in infants with left to right shunts. Am. J. Cardiol. 81(11), 1366–1368 (1998).
  • Buchhorn R, Hulpke-Wette M, Ruschewski W et al. Effects of therapeutic β blockade on myocardial function and cardiac remodelling in congenital cardiac disease. Cardiol. Young 13(1), 36–43 (2003).
  • Buchhorn R, Ross RD, Hulpke-Wette M et al. Effectiveness of low dose captopril versus propranolol therapy in infants with severe congestive failure due to left-to-right shunts. Int. J. Cardiol. 76(2–3), 227–233 (2000).
  • Doughan AR, McConnell ME, Book WM. Effect of β-blockers (carvedilol or metoprolol XL) in patients with transposition of great arteries and dysfunction of the systemic right ventricle. Am. J. Cardiol. 99(5), 704–706 (2007).
  • Giardini A, Lovato L, Donti A et al. A pilot study on the effects of carvedilol on right ventricular remodelling and exercise tolerance in patients with systemic right ventricle. Int. J. Cardiol. 114(2), 241–246 (2007).
  • Josephson CB, Howlett JG, Jackson SD, Finley J, Kells CM. A case series of systemic right ventricular dysfunction post atrial switch for simple D-transposition of the great arteries: the impact of β-blockade. Can. J. Cardiol. 22(9), 769–772 (2006).
  • Dimopoulos K. Trials and tribulations in adult congenital heart disease. Int. J. Cardiol. 129(2), 160–162 (2008).
  • Jourdain P, Jondeau G, Funck F et al. Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J. Am. Coll. Cardiol. 49(16), 1733–1739 (2007).
  • Kawai K, Hata K, Takaoka H, Kawai H, Yokoyama M. Plasma brain natriuretic peptide as a novel therapeutic indicator in idiopathic dilated cardiomyopathy during β-blocker therapy: a potential of hormone-guided treatment. Am. Heart J. 141(6), 925–932 (2001).
  • McGeoch G, Lainchbury J, Town GI, Toop L, Espiner E, Richards AM. Plasma brain natriuretic peptide after long-term treatment for heart failure in general practice. Eur. J. Heart Fail. 4(4), 479–483 (2002).
  • Murdoch DR, McDonagh TA, Byrne J et al. Titration of vasodilator therapy in chronic heart failure according to plasma brain natriuretic peptide concentration: randomized comparison of the hemodynamic and neuroendocrine effects of tailored versus empirical therapy. Am. Heart J. 138(6 Pt 1), 1126–1132 (1999).
  • Nicholls MG, Lainchbury JG, Richards AM, Troughton RW, Yandle TG. Brain natriuretic peptide-guided therapy for heart failure. Ann. Med. 33(6), 422–427 (2001).
  • Pfisterer M, Buser P, Rickli H et al.; TIME-CHF Investigators. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. JAMA 301(4), 383–392 (2009).
  • Anand IS, Fisher LD, Chiang YT et al.; Val-HeFT Investigators. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 107(9), 1278–1283 (2003).
  • Bettencourt P, Azevedo A, Pimenta J, Friões F, Ferreira S, Ferreira A. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation 110(15), 2168–2174 (2004).
  • Latini R, Masson S, Anand I et al.; Valsartan Heart Failure Trial Investigators. Effects of valsartan on circulating brain natriuretic peptide and norepinephrine in symptomatic chronic heart failure: the Valsartan Heart Failure Trial (Val-HeFT). Circulation 106(19), 2454–2458 (2002).
  • Masson S, Latini R, Anand IS et al.; Val-HeFT Investigators. Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). J. Am. Coll. Cardiol. 52(12), 997–1003 (2008).
  • Richards AM, Doughty R, Nicholls MG et al.; Australia–New Zealand Heart Failure Group. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. J. Am. Coll. Cardiol. 37(7), 1781–1787 (2001).
  • Richards AM, Lainchbury JG, Nicholls MG, Troughton RW, Yandle TG. BNP in hormone-guided treatment of heart failure. Trends Endocrinol. Metab. 13(4), 151–155 (2002).
  • Troughton RW, Frampton CM, Yandle TG, Espiner EA, Nicholls MG, Richards AM. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 355(9210), 1126–1130 (2000).
  • Troughton RW, Richards AM, Nicholls MG. Individualized treatment of heart failure. Intern. Med. J. 31(3), 138–141 (2001).
  • Clerico A, Fontana M, Ripoli A, Emdin M. Clinical relevance of BNP measurement in the follow-up of patients with chronic heart failure. Adv. Clin. Chem. 48, 163–179 (2009).
  • Warnes CA, Williams RG, Bashore TM et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation 118(23), 2395–2451 (2008).
  • Niedner MF, Foley JL, Riffenburgh RH, Bichell DP, Peterson BM, Rodarte A. B-type natriuretic peptide: perioperative patterns in congenital heart disease. Congenit. Heart Dis. 5(3), 243–255 (2010).
  • Hsu JH, Keller RL, Chikovani O et al. B-type natriuretic peptide levels predict outcome after neonatal cardiac surgery. J. Thorac. Cardiovasc. Surg. 134(4), 939–945 (2007).
  • Mir TS, Haun C, Lilje C, Läer S, Weil J. Utility of N-terminal brain natriuretic peptide plasma concentrations in comparison to lactate and troponin in children with congenital heart disease following open-heart surgery. Pediatr. Cardiol. 27(2), 209–216 (2006).
  • Cantinotti M, Lorenzoni V, Storti S et al. Thyroid and brain natriuretic peptide response in children undergoing cardiac surgery for congenital heart disease–age-related variations and prognostic value. Circ. J. 77(1), 188–197 (2012).
  • Book WM, Hott BJ, McConnell M. B-type natriuretic peptide levels in adults with congenital heart disease and right ventricular failure. Am. J. Cardiol. 95(4), 545–546 (2005).
  • Gatzoulis MA, Balaji S, Webber SA et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicenter study. Lancet 356(9234), 975–981 (2000).
  • Gatzoulis MA, Till JA, Somerville J, Redington AN. Mechanoelectrical interaction in tetralogy of Fallot. QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation 92(2), 231–237 (1995).
  • Cheung EW, Lam WW, Chiu CS, Chau AK, Cheung SC, Cheung YF. Plasma brain natriuretic peptide levels, right ventricular volume overload and exercise capacity in adolescents after surgical repair of tetralogy of Fallot. Int. J. Cardiol. 121(2), 155–162 (2007).
  • Dodge-Khatami A, Büchel EV, Knirsch W et al. Brain natriuretic peptide and magnetic resonance imaging in tetralogy with right ventricular dilatation. Ann. Thorac. Surg. 82(3), 983–988 (2006).
  • Hayabuchi Y, Matsuoka S, Kuroda Y. Plasma concentrations of atrial and brain natriuretic peptides and cyclic guanosine monophosphate in response to dobutamine infusion in patients with surgically repaired tetralogy of Fallot. Pediatr. Cardiol. 20(5), 343–350 (1999).
  • Oosterhof T, Tulevski II, Vliegen HW, Spijkerboer AM, Mulder BJ. Effects of volume and/or pressure overload secondary to congenital heart disease (tetralogy of Fallot or pulmonary stenosis) on right ventricular function using cardiovascular magnetic resonance and B-type natriuretic peptide levels. Am. J. Cardiol. 97(7), 1051–1055 (2006).
  • Norozi K, Buchhorn R, Bartmus D et al. Elevated brain natriuretic peptide and reduced exercise capacity in adult patients operated on for tetralogy of Fallot is due to biventricular dysfunction as determined by the myocardial performance index. Am. J. Cardiol. 97(9), 1377–1382 (2006).
  • Oldershaw P, Bishop A. The difficulties of assessing right ventricular function. Br. Heart J. 74(2), 99–100 (1995).
  • Voelkel NF, Quaife RA, Leinwand LA et al.; National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114(17), 1883–1891 (2006).
  • Koch AM, Zink S, Singer H. B-type natriuretic peptide in patients with systemic right ventricle. Cardiology 110(1), 1–7 (2008).
  • Nir A, Bar-Oz B, Perles Z, Brooks R, Korach A, Rein AJ. N-terminal pro-B-type natriuretic peptide: reference plasma levels from birth to adolescence. Elevated levels at birth and in infants and children with heart diseases. Acta Paediatr. 93(5), 603–607 (2004).
  • Kunii Y, Kamada M, Ohtsuki S et al. Plasma brain natriuretic peptide and the evaluation of volume overload in infants and children with congenital heart disease. Acta Med. Okayama 57(4), 191–197 (2003).
  • Hager A, Christov F, Hess J. Increase in N-terminus-pro-B-type natriuretic peptide during exercise of patients with univentricular heart after a total cavopulmonary connection. Pediatr. Cardiol. 33(5), 764–769 (2012).
  • Law YM, Ettedgui J, Beerman L, Maisel A, Tofovic S. Comparison of plasma B-type natriuretic peptide levels in single ventricle patients with systemic ventricle heart failure versus isolated cavopulmonary failure. Am. J. Cardiol. 98(4), 520–524 (2006).
  • Lowenthal A, Camacho BV, Lowenthal S et al. Usefulness of B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide as biomarkers for heart failure in young children with single ventricle congenital heart disease. Am. J. Cardiol. 109(6), 866–872 (2012).
  • Diller GP, Gatzoulis MA. Pulmonary vascular disease in adults with congenital heart disease. Circulation 115(8), 1039–1050 (2007).
  • Engelfriet P, Boersma E, Oechslin E et al. The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on adult congenital heart disease. Eur. Heart J. 26(21), 2325–2333 (2005).
  • Hopkins WE, Chen Z, Fukagawa NK, Hall C, Knot HJ, LeWinter MM. Increased atrial and brain natriuretic peptides in adults with cyanotic congenital heart disease: enhanced understanding of the relationship between hypoxia and natriuretic peptide secretion. Circulation 109(23), 2872–2877 (2004).
  • Hopkins WE, Hall C. Paradoxical relationship between N-terminal proatrial natriuretic peptide and filling pressure in adults with cyanotic congenital heart disease. Circulation 96(7), 2215–2220 (1997).
  • Trojnarska O, Gwizdala A, Katarzynski S et al. The BNP concentrations and exercise capacity assessment with cardiopulmonary stress test in cyanotic adult patients with congenital heart diseases. Int. J. Cardiol. 139(3), 241–247 (2010).
  • Haanwinckel MA, Elias LK, Favaretto AL, Gutkowska J, McCann SM, Antunes-Rodrigues J. Oxytocin mediates atrial natriuretic peptide release and natriuresis after volume expansion in the rat. Proc. Natl Acad. Sci. USA 92(17), 7902–7906 (1995).
  • Dimopoulos K, Inuzuka R, Goletto S et al. Improved survival among patients with Eisenmenger syndrome receiving advanced therapy for pulmonary arterial hypertension. Circulation 121(1), 20–25 (2010).
  • Galiè N, Beghetti M, Gatzoulis MA et al.; Bosentan Randomized Trial of Endothelin Antagonist Therapy-5 (BREATHE-5) Investigators. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation 114(1), 48–54 (2006).
  • Diller GP, Alonso-Gonzalez R, Kempny A et al. B-type natriuretic peptide concentrations in contemporary Eisenmenger syndrome patients: predictive value and response to disease targeting therapy. Heart 98(9), 736–742 (2012).
  • Cantor WJ, Harrison DA, Moussadji JS et al. Determinants of survival and length of survival in adults with Eisenmenger syndrome. Am. J. Cardiol. 84(6), 677–681 (1999).
  • Daliento L, Somerville J, Presbitero P et al. Eisenmenger syndrome. Factors relating to deterioration and death. Eur. Heart J. 19(12), 1845–1855 (1998).
  • Diller GP, Dimopoulos K, Broberg CS et al. Presentation, survival prospects, and predictors of death in Eisenmenger syndrome: a combined retrospective and case–control study. Eur. Heart J. 27(14), 1737–1742 (2006).
  • Niwa K, Perloff JK, Kaplan S, Child JS, Miner PD. Eisenmenger syndrome in adults: ventricular septal defect, truncus arteriosus, univentricular heart. J. Am. Coll. Cardiol. 34(1), 223–232 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.