2,235
Views
420
CrossRef citations to date
0
Altmetric
Review

Antibacterial surfaces for biomedical devices

, &
Pages 553-567 | Published online: 09 Jan 2014

References

  • Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury37(2 Suppl. 1), S3–S14 (2006).
  • Darouiche RO. Current concepts – treatment of infections associated with surgical implants. N. Eng. J. Med.350(14), 1422–1429 (2004).
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science284(5418), 1318–1322 (1999).
  • Hoyle BD, Costerton JW. Bacterial resistance to antibiotics: the role of biofilms. Progress Drug Res.37, 91–105 (1991).
  • Cheng G, Xite H, Zhang Z, Chen SF, Jiang SY. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew. Chem. Int. Ed. Engl.47(46), 8831–8834 (2008).
  • Gottenbos B, Van der Mei HC, Busscher HJ, Grijpma DW, Feijen J. Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). J. Mater. Sci. Mater. Med.10(12), 853–855 (1999).
  • Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials28(6), 909–915 (2007).
  • Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc. Natl Acad. Sci. USA98(11), 5981–5985 (2001).
  • Fundeanu I, van der Mei HC, Schouten AJ, Busscher HJ. Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids Surf. B Biointerfaces64(2), 297–301 (2008).
  • Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials25(18), 4135–4148 (2004).
  • Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir19(17), 6912–6921 (2003).
  • Ostuni E, Chapman RG, Liang MN et al. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir17(20), 6336–6343 (2001).
  • Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem. Soc. Rev.35(9), 780–789 (2006).
  • Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J. Control. Release130(3), 202–215 (2008).
  • Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials27(11), 2450–2467 (2006).
  • Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate – poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials27(23), 4239–4249 (2006).
  • Alt V, Bitschnau A, Osterling J et al. The effects of combined gentamicin-hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model. Biomaterials27(26), 4627–4634 (2006).
  • Rauschmann MA, Wichelhaus TA, Stirnal V et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials26(15), 2677–2684 (2005).
  • Jones SA, Bowler PG, Walker M, Parsons D. Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair Regen.12(3), 288–294 (2004).
  • Shanmugasundaram N, Sundaraseelan J, Uma S, Selvaraj D, Babu M. Design and delivery of silver sulfadiazine from alginate microspheres-impregnated collagen scaffold. J. Biomed. Mater. Res. Part B77B(2), 378–388 (2006).
  • Kumar R, Munstedt H. Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release. Polym. Int.54(8), 1180–1186 (2005).
  • Nablo BJ, Rothrock AR, Schoenfisch MH. Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants. Biomaterials26(8), 917–924 (2005).
  • Stigter M, Bezemer J, de Groot K, Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J. Control. Release99(1), 127–137 (2004).
  • Joosten U, Joist A, Frebel T, Brandt B, Diederichs S, von Eiff C. Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin osteomyelitis: studies in the treatment of chronic in vitro and in vivo. Biomaterials25(18), 4287–4295 (2004).
  • Kenawy ER, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules8(5), 1359–1384 (2007).
  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules4(6), 1457–1465 (2003).
  • Salick DA, Kretsinger JK, Pochan DJ, Schneider JP. Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J. Am. Chem. Soc.129(47), 14793–14799 (2007).
  • Iannelli M, Bergamelli F, Galli G. Microwave-assisted synthesis of a new hydantoin monomer for antibacterial polymeric materials. Aust. J. Chem.62(3), 232–235 (2009).
  • Liang J, Chen Y, Barnes K, Wu R, Worley SD, Huang TS. N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials27(11), 2495–2501 (2006).
  • Liang J, Owens JR, Huang TS, Worley SD. Biocidal hydantoinylsiloxane polymers. IV. N-halamine siloxane-functionalized silica gel. J. Appl. Polym. Sci.101(5), 3448–3454 (2006).
  • Kenawy ER, Abdel-Hay FI, Abou El-Magd A, Mahmoud Y. Biologically active polymers: modification and anti-microbial activity of chitosan derivatives. J. Bioact. Compat. Polym.20(1), 95–111 (2005).
  • Kenawy ER, Abdel-Hay FI, El-Magd AA, Mahmoud Y. Synthesis and antimicrobial activity of some polymers derived from modified amino polyacrylamide by reacting it with benzoate esters and benzaldehyde derivatives. J. Appl. Polym. Sci.99(5), 2428–2437 (2006).
  • Makal U, Wood L, Ohman DE, Wynne KJ. Polyurethane biocidal polymeric surface modifiers. Biomaterials27(8), 1316–1326 (2006).
  • Mizerska U, Fortuniak W, Chojnowski J, Halasa R, Konopacka A, Werel W. Polysiloxane cationic biocides with imidazolium salt (ImS) groups, synthesis and antibacterial properties. Eur. Polym. J.45(3), 779–787 (2009).
  • Gaonkar TA, Caraos L, Modak S. Efficacy of a silicone urinary catheter impregnated with chlorhexidine and Triclosan against colonization with Proteus mirabilis and other uropathogens. Infect. Control Hosp. Epidemiol.28(5), 596–598 (2007).
  • Park JH, Cho YW, Cho YH et al. Norfloxacin-releasing urethral catheter for long-term catheterization. J. Biomater. Sci. Polym. Ed.14(9), 951–962 (2003).
  • Rossi S, Azghani AO, Omri A. Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J. Antimicrob. Chemother.54(6), 1013–1018 (2004).
  • Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J. Biomed. Mater. Res. Part B70B(2), 286–296 (2004).
  • Krasko MY, Golenser J, Nyska A, Nyska M, Brin YS, Domb AJ. Gentamicin extended release from an injectable polymeric implant. J. Control. Release117(1), 90–96 (2007).
  • Aviv M, Berdicevsky I, Zilberman M. Gentamicin-loaded bioresorbable films for prevention of bacterial infections associated with orthopedic implants. J. Biomed. Mater. Res. Part A83(1), 10–19 (2007).
  • Prabu P, Dharmaraj N, Aryal S, Lee BM, Ramesh V, Kim HY. Preparation and drug release activity of scaffolds containing collagen and poly(caprolactone). J. Biomed. Mater. Res. Part A79(1), 153–158 (2006).
  • Blanchemain N, Haulon S, Martel B, Traisnel M, Morcellet M, Hildebrand HF. Vascular PET prostheses surface modification with cyclodextrin coating: development of a new drug delivery system. Eur. J. Vasc. Endovasc. Surg.29(6), 628–632 (2005).
  • Blanchemain N, Haulon S, Boschin F et al. Vascular prostheses with controlled release of antibiotics – part 1: surface modification with cyclodextrins of PET prostheses. Biomol. Eng.24(1), 149–153 (2007).
  • Hanssen AD. Prophylactic use of antibiotic bone cement – an emerging standard – in opposition. J. Arthroplast.19(4), 73–77 (2004).
  • Springer BD, Lee GC, Osmon D, Haidukewych GJ, Hanssen AD, Jacofsky DJ. Systemic safety of high-dose antibiotic-loaded cement spacers after resection of an infected total knee arthroplasty. Clin. Orthop. Rel. Res. (427), 47–51 (2004).
  • Charville GW, Hetrick EM, Geer CB, Schoenfisch MH. Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release. Biomaterials29(30), 4039–4044 (2008).
  • Frost MC, Reynolds MM, Meyerhoff ME. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contactincy medical devices. Biomaterials26(14), 1685–1693 (2005).
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv.27(1), 76–83 (2009).
  • Amberg M, Grieder K, Barbadoro P, Heuberger M, Hegemann D. Electromechanical behavior of nanoscale silver coatings on PET fibers. Plasma Process Polym.5(9), 874–880 (2008).
  • Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC. Nanoseparated polymeric networks with multiple antimicrobial properties. Adv. Mater.16(12), 957 (2004).
  • Vimala K, Sivudu KS, Mohan YM, Sreedhar B, Raju KM. Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr. Polym.75(3), 463–471 (2009).
  • Lee H, Lee Y, Statz AR, Rho J, Park TG, Messersmith PB. Substrate-independent layer-by-layer assembly by using mussel-adhesive-inspired polymers. Adv. Mater.20(9), 1619–1623 (2008).
  • de Santa Maria LC, Souza JDC, Aguiar M et al. Synthesis, characterization, and bactericidal properties of composites based on crosslinked resins containing silver. J. Appl. Polym. Sci. Symp.107(3), 1879–1886 (2008).
  • Zaporojtchenko V, Podschun R, Schurmann U, Kulkarni A, Faupel F. Physico–chemical and antimicrobial properties of co-sputtered Ag–Au/PTFE nanocomposite coatings. Nanotechnology17(19), 4904–4908 (2006).
  • Despax B, Raynaud P. Deposition of ‘polysiloxane’ thin films containing silver particles by an RF asymmetrical discharge. Plasma Process Polym.4(2), 127–134 (2007).
  • Eksik O, Erciyes AT, Yagci Y. In situ synthesis of oil based polymer composites containing silver nanoparticles. J. Macromolecular Sci. Pt A Pure Appl. Chem.45(9), 698–704 (2008).
  • Furno F, Morley KS, Wong B et al. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J. Antimicrob. Chemother.54(6), 1019–1024 (2004).
  • Kelly FM, Johnston JH, Borrmann T, Richardson MJ. Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. Eur. J. Inorganic Chem. (35), 5571–5577 (2007).
  • Kong H, Jang J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir24(5), 2051–2056 (2008).
  • Liu SX, He JH, Xue JF, Ding WJ. Efficient fabrication of transparent antimicrobial poly(vinyl alcohol) thin films. J. Nanopart. Res.11(3), 553–560 (2009).
  • Sambhy V, Peterson BR, Sen A. Multifunctional silane polymers for persistent surface derivatization and their antimicrobial properties. Langmuir24(14), 7549–7558 (2008).
  • Mallick K, Witcomb MJ, Scurrell MS. Self-assembly of silver nanoparticles: formation of a thin silver film in a polymer matrix. Mater. Sci. Eng. Biomim. Mater. Sens. Syst.26(1), 87–91 (2006).
  • Lu J, Moon KS, Wong CP. Silver/polymer nanocomposite as a high-k polymer matrix for dielectric composites with improved dielectric performance. J. Mater. Chem.18(40), 4821–4826 (2008).
  • Gray JE, Norton PR, Griffiths K. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane). Thin Solid Films484(1–2), 196–207 (2005).
  • Sanchez-Valdes S, Ortega-Ortiz H, Valle L, Medellin-Rodriguez FJ, Guedea-Miranda R. Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J. Appl. Polym. Sci. Symp.111(2), 953–962 (2009).
  • Galya T, Sedlarik V, Kuritka I, Novotny R, Sedlarikova J, Saha P. Antibacterial poly(vinyl alcohol) film containing silver nanoparticles: preparation and characterization. J. Appl. Polym. Sci.110(5), 3178–3185 (2008).
  • Schwarz F, Thorwarth G, Wehlus T, Stritzker B. Silver nanocluster containing diamond like carbon. Physica Status Solidi A Appl. Res.205(4), 976–979 (2008).
  • Voccia S, Ignatova M, Jerome R, Jerome C. Design of antibacterial surfaces by a combination of electrochemistry and controlled radical polymerization. Langmuir22(20), 8607–8613 (2006).
  • Kong H, Jang J. Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules9(10), 2677–2681 (2008).
  • Vachon DJ, Yager DR. Novel sulfonated hydrogel composite with the ability to inhibit proteases and bacterial growth. J. Biomed. Mater. Res. A76A(1), 35–43 (2006).
  • Kumar A, Vemula PK, Ajayan PM, John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater.7(3), 236–241 (2008).
  • Loher S, Schneider OD, Maienfisch T, Bokorny S, Stark WJ. Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces. Small4(6), 824–832 (2008).
  • Schneider OD, Loher S, Brunner TJ, Schmidlin P, Stark WJ. Flexible, silver containing nanocomposites for the repair of bone defects: antimicrobial effect against E. coli infection and comparison to tetracycline containing scaffolds. J. Mater. Chem.18(23), 2679–2684 (2008).
  • Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai LM, Hussain SM. Can silver nanoparticles be useful as potential biological labels? Nanotechnology19(23), 235104 (2008).
  • Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W. Silver coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J. Trauma60(3), 648–652 (2006).
  • Riley DK, Pavia AT, Beatty PG et al. The prophylactic use of low-dose amphotericin-B in bone-marrow transplant patients. Am. J. Med.97(6), 509–514 (1994).
  • Srinivasan A, Karchmer T, Richards A, Song X, Perl TM. A prospective trial of a novel, silicone-based, silver-coated foley catheter for the prevention of nosocomial urinary tract infections. Infect. Control Hosp. Epidemiol.27, 38–43 (2006).
  • Aumsuwan N, Heinhorst S, Urban MW. The effectiveness of antibiotic activity of penicillin attached to expanded poly(tetrafluoroethylene) (ePTFE) surfaces: a quantitative assessment. Biomacromolecules8(11), 3525–3530 (2007).
  • Statz AR, Park JP, Chongsiriwatana NP, Barron AE, Messersmith PB. Surface-immobilised antimicrobial peptoids. Biofouling24(6), 439–448 (2008).
  • Kugler R, Bouloussa O, Rondelez F. Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology151, 1341–1348 (2005).
  • Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. Permanent, non-leaching antibacterial surfaces – 2: how high density cationic surfaces kill bacterial cells. Biomaterials28, 4870–4879 (2007).
  • Huang JY, Koepsel RR, Murata H et al. Nonleaching antibacterial glass surfaces via ‘Grafting Onto’: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir24(13), 6785–6795 (2008).
  • Bouloussa O, Rondelez F, Semetey V. A new, simple approach to confer permanent antimicrobial properties to hydroxylated surfaces by surface functionalization. Chem. Commun. (Camb.) (8), 951–953 (2008).
  • Brizzolara RA, Stamper DM. The effect of covalent surface immobilization on the bactericidal efficacy of a quaternary ammonium compound. Surf. Interface Anal.39(7), 559–566 (2007).
  • Rozga-Wijas K, Mizerska U, Fortuniak W, Chojnowski J, Halasa R, Werel W. Quaternary ammonium salts (QAS) modified polysiloxane biocide supported on silica materials. J. Inorganic Organometallic Polymers Materials17, 605–613 (2007).
  • Saif MJ, Anwar J, Munawar MA. A novel application of quaternary ammonium compounds as antibacterial hybrid coating on glass surfaces. Langmuir25(1), 377–379 (2009).
  • Shi ZL, Neoh KG, Kang ET. Antibacterial and adsorption characteristics of activated carbon functionalized with quaternary ammonium moieties. Ind. Eng. Chem. Res.46(2), 439–445 (2007).
  • Xu X, Yang QH, Lei WX et al. Synthesis, characterization and antimicrobial activity of nano-fumed silica derivative with quaternary ammonium salts. Guang Pu Xue Yu Guang Pu Fen Xi26(3), 444–447 (2006).
  • Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials23(6), 1417–1423 (2002).
  • Thebault P, de Givenchy ET, Levy R, Vandenberghe Y, Guittard F, Geribaldi S. Preparation and antimicrobial behaviour of quaternary ammonium thiol derivatives able to be grafted on metal surfaces. Eur. J. Med. Chem.44(2), 717–724 (2009).
  • Marini M, Bondi M, Iseppi R, Toselli M, Pilati F. Preparation and antibacterial activity of hybrid materials containing quaternary ammonium salts via sol-gel process. European Polymer Journal43, 3621–3628 (2007).
  • McCubbin PJ, Forbes E, Gow MM, Gorham SD. Covalent attachment of quaternary ammonium compounds to a polyethylene surface via a hydrolyzable ester linkage: basis for a controlled-release system of antiseptics from an inert surface. J. Appl. Polym. Sci. Symp.100(1), 538–545 (2006).
  • Ignatova M, Voccia S, Gilbert B et al. Synthesis of copolymer brushes endowed with adhesion to stainless steel surfaces and antibacterial properties by controlled nitroxide-mediated radical polymerization. Langmuir20(24), 10718–10726 (2004).
  • El-Hayek RF, Dye K, Warner JC. Bacteriostatic polymer film immobilization. J. Biomed. Mater. Res. A79(4), 874–881 (2006).
  • Huang JY, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules8(5), 1396–1399 (2007).
  • Ravikumar T, Murata H, Koepsel RR, Russell AJ. Surface-active antifungal polyquaternary amine. Biomacromolecules7(10), 2762–2769 (2006).
  • Jampala SN, Sarmadi M, Somers EB, Wong ACL, Denes FS. Plasma-enhanced synthesis of bactericidal quaternary ammonium thin layers on stainless steel and cellulose surfaces. Langmuir24(16), 8583–8591 (2008).
  • Li Z, Lee D, Sheng XX, Cohen RE, Rubner MF. Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir22(24), 9820–9823 (2006).
  • Shi ZL, Neoh KG, Kang ET, Wang W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials27(11), 2440–2449 (2006).
  • Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weissa E. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials27(21), 3995–4002 (2006).
  • Li F, Chen JH, Chai ZG et al. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J. Dent.37(4), 289–296 (2009).
  • Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol.106(3), 290–302 (2006).
  • Al-Bataineh SA, Britcher LG, Griesser HJ. XPS characterization of the surface of immobilization of antibacterial furanones. Surface Sci.600, 952–962 (2006a).
  • von Nussbaum F, Brands M, Hinzen B, Weigand S, Habich D. Antibacterial natural products in medicinal chemistry - exodus or revival? Angew. Chem. Int. Ed. Engl.45(31), 5072–5129 (2006).
  • Yadav JS, Basak AK, Srihari P. An aldol approach to the synthesis of the anti-tubercular agent erogorgiaene. Tetrahedron Lett.48(16), 2841–2843 (2007).
  • Ren D, Sims JJ, Wood TK. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ. Microbiol.3(11), 731–736 (2001).
  • Levy LM, Cabrera GM, Wright JE, Seldes AM. 5H-Furan-2-ones from fungal cultures of Aporpium caryae. Phytochemistry62, 239–243 (2003).
  • Hume EBH, Baveja J, Muir B et al. The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials25(20), 5023–5030 (2004).
  • Baveja JK, Willcox MDP, Hume EBH, Kumar N, Odell R, Poole-Warren LA. Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials25, 5003–5012 (2004).
  • Rasmussen TB, Manefield M, Andersen JB et al. How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology146(12), 3237–3244 (2000).
  • Al-Bataineh SA. Spectroscopic characterisation of surface-immobilised antibacterial furanone coatings. PhD Thesis.Ian Wark Research Institute. University of South Australia, Australia (2006).
  • Zhu H, Kumar A, Ozkan J et al. Fimbrolide-coated antimicrobial lenses: their in vitro and in vivo effects. Optom. Vis. Sci.85(5), 292–300 (2008).
  • Al-Bataineh SA, Jasieniak M, Britcher LG, Griesser HJ. TOF-SIMS and principal component analysis characterization of the multilayer surface grafting of small molecules: antibacterial furanones. Anal. Chem.80(2), 430–436 (2008).
  • Ys H, Ndi CP, Semple SJ, Griesser HJ. Novel antibacterial coatings from australian plants. Biomaterials (2009) (In Press).
  • Smith JE, Tucker D, Watson K, Jones GL. Identification of antibacterial constituents from the indigenous Australian medicinal plant Eremophila duttonii F. Muell. (Myoporaceae). J. Ethnopharmacol.112(2), 386–393 (2007).
  • Ghisalberti EL. The ethnopharmacology and phytochemistry of Eremophila species (Myoporaceae). J. Ethnopharmacol.44(1), 1–9 (1994).
  • Ndi CP, Semple SJ, Griesser HJ, Pyke SM, Barton MD. Antimicrobial compounds from the Australian desert plant Eremophila neglecta. J. Nat. Prod.70(9), 1439–1443 (2007).
  • Palombo EA, Semple SJ. Antibacterial activity of Australian plant extracts against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). J. Basic Microbiol.42(6), 444–448 (2002).
  • Ndi CP, Semple SJ, Griesser HJ, Barton MD. Antimicrobial activity of some Australian plant species from the genus Eremophila. J. Basic Microbiol.47, 158–164 (2007).
  • Palombo EA, Semple SJ. Antibacterial activity of traditional Australian medicinal plants. J. Ethnopharmacol.77(2–3), 151–157 (2001).
  • Ndi CP, Semple SJ, Griesser HJ, Pyke SM, Barton MD. Antimicrobial compounds from Eremophila serrulata. Phytochemistry68(21), 2684–2690 (2007).
  • Liu Q, Harrington D, Kohen JL, Vemulpad S, Jamie JF. Bactericidal and cyclooxygenase inhibitory diterpenes from Eremophila sturtii. Phytochemistry67(12), 1256–1261 (2006).
  • Heidenau F, Mittelmeier W, Detsch R et al. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J. Mater. Sci. Mater. Med.16(10), 883–888 (2005).

Patent

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.