3,822
Views
345
CrossRef citations to date
0
Altmetric
Special Report

Sensory feedback in upper limb prosthetics

, , , , &
Pages 45-54 | Published online: 09 Jan 2014

References

  • Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2(6), 346–357 (2007).
  • Kyberd PJ, Wartenberg C, Sandsjö L et al. Survey of upper-extremity prosthesis users in Sweden and the United Kingdom. J. Prosthet. Orthot. 19(2), 55–62 (2007).
  • Weir R, Sensinger J. The design of artificial arms and hands for prosthetic applications. In: Biomedical Engineering and Design Handbook (Volume II: Applications). Kutz M (Ed.) McGraw-Hill, NY, USA, 537–598 (2009).
  • Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009).
  • Scott RN. Feedback in myoelectric prostheses. Clin. Orthop. Relat. Res. 256, 58–63 (1990).
  • Childress DS. Closed-loop control in prosthetic systems: historical perspective. Ann. Biomed. Eng. 8(4–6), 293–303 (1980).
  • Chappell PH. Making sense of artificial hands. J. Med. Eng. Technol. 35(1), 1–18 (2011).
  • Micera S, Carpaneto J, Raspopovic S. Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3, 48–68 (2010).
  • Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13(4), 468–472 (2005).
  • Rossini PM, Micera S, Benvenuto A et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121(5), 777–783 (2010).
  • Botvinick M, Cohen J. Rubber hands ‘feel’ touch that eyes see. Nature 391(6669), 756 (1998).
  • Shimada S, Fukuda K, Hiraki K. Rubber hand illusion under delayed visual feedback. PloS one 4(7), e6185 (2009).
  • Johansson RS, Edin BB. Predictive feed-forward sensory control during grasping and manipulation in man. Biomed. Res. 14(4), 95–106 (1993).
  • Childress DS. Powered limb prostheses: their clinical significance. IEEE Trans. Biomed. Eng. BE20(3), 200–207 (1973).
  • Johansson RS, Westling G. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp. Brain Res. 66(1), 141–154 (1987).
  • Kaczmarek KA, Webster JG, Bach-y-Rita P, Tompkins WJ. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE Trans. Biomed. Eng. 38(1), 1–16 (1991).
  • Cipriani C, D’Alonzo M, Carrozza MC. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Trans. Biomed. Eng. 59(2), 400–408 (2012).
  • Jones LA, Sarter NB. Tactile displays: guidance for their design and application. Hum. Factors 50(1), 90–111 (2008).
  • Wilska A. On the vibrational sensitivity in different regions of the body surface. Acta Physiol. Scand. 31(2–3), 284–289 (1954).
  • Shannon GF. A comparison of alternative means of providing sensory feedback on upper limb prostheses. Med. Biol. Eng. 14(3), 289–294 (1976).
  • Bach-Y-Rita P, Collins CC. Sensory substitution and limb prosthesis. Proceedings of the Third International Symposium on Advances in External Control of Human Extremities. 9–21 (1970).
  • Mann RW, Reimers SD. Kinesthetic sensing for the EMG controlled Boston Arm. IEEE Trans. Man–Mach. Syst. MM11(1), 110–115 (1970).
  • Antfolk C, D’Alonzo M, Controzzi M et al. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile vs. mechanotactile sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. doi:10.1109/TNSRE.2012.2217989 (2012) (Epub ahead of print).
  • Saunders I, Vijayakumar S. The role of feed-forward and feedback processes for closed-loop prosthesis control. J. Neuroeng. Rehabil. 8, 60 (2011).
  • Sears HH, Iversen E, Archer S, Linder J, Hays K. Grip force feedback in an electric hand – preliminary results. Presented at: Proceedings of the 2008 MyoElectric Controls/Powered Prosthetics Symposium, MEC’08. 175–178 (2008).
  • Chatterjee A, Chaubey P, Martin J, Thakor N. Testing a prosthetic haptic feedback simulator with an interactive force matching task. J. Prosthet. Orthot. 20(2), 27–34 (2008).
  • Cipriani C, Zaccone F, Micera S, Carrozza MC. On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction. IEEE Trans. Robot. 24(1), 170–184 (2008).
  • Pons JL, Ceres R, Rocon E et al. Objectives and technological approach to the development of the multifunctional MANUS upper limb prosthesis. Robotica 23(3), 301–310 (2005).
  • Pylatiuk C, Kargov A, Schulz S. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. J. Prosthet. Orthot. 18(2), 57–61 (2006).
  • Stepp CE, Matsuoka Y. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 2089–2092 (2010).
  • Szeto AY, Saunders FA. Electrocutaneous stimulation for sensory communication in rehabilitation engineering. IEEE Trans. Biomed. Eng. 29(4), 300–308 (1982).
  • Saunders FA. An electrotactile sound detector for the deaf. IEEE Trans. Audio Electroacoust. 21(3), 285–287 (1973).
  • Sasaki Y, Nakayama Y, Yoshida M. Sensory feedback system using interferential current for EMG prosthetic hand. Conf. Proc. Joint IEEE Eng. Med. Biol. Soc. 3, 2402–2403 (2002).
  • Scott RN, Brittain RH, Caldwell RR, Cameron AB, Dunfield VA. Sensory-feedback system compatible with myoelectric control. Med. Biol. Eng. Comput. 18(1), 65–69 (1980).
  • Lundborg G, Rosén B, Lindström K, Lindberg S. Artificial sensibility based on the use of piezoresistive sensors. Preliminary observations. J. Hand Surg. Br. 23(5), 620–626 (1998).
  • Wang GZ, Zhang XN. Gripping force sensory feedback for a myoelectrically controlled forearm prosthesis. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vols 1–5. 501–504 (1995).
  • Shannon GF. Sensory feedback for artificial limbs. Med. Prog. Technol. 6(2), 73–79 (1979).
  • Tupper CN, Gerhard GC. Improved prosthesis control via high resolution electro-tactile feedback. Proceedings of the 1989 Fifteenth Annual Northeast Bioengineering Conference. 39–40 (1989).
  • Lundborg G, Rosén B, Lindberg S. Hearing as substitution for sensation: a new principle for artificial sensibility. J. Hand Surg. Am. 24(2), 219–224 (1999).
  • Gonzales J, Soma H, Sekine M, Yu W. Psycho-physiological assessment of a prosthetic hand sensory feedback system base on an auditory display: a preliminary study. J. Neuroeng. Rehabil. 9, 33 (2012).
  • Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans. Neural Syst. Rehabil. Eng. 18(1), 58–66 (2010).
  • Riso RR. Strategies for providing upper extremity amputees with tactile and hand position feedback – moving closer to the bionic arm. Technol. Health Care 7(6), 401–409 (1999).
  • Davalli A, Sacchetti R, Fanin S, Avanzolini G, Urbano E. Biofeedback for upper limb myoelectric prostheses. Technol. Disabil. 13(3), 161–172 (2000).
  • Antfolk C, Björkman A, Frank SO, Sebelius F, Lundborg G, Rosen B. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin. J. Rehabil. Med. 44(8), 702–707 (2012).
  • Sensinger JW, Schultz AE, Kuiken TA. Examination of force discrimination in human upper limb amputees with reinnervated limb sensation following peripheral nerve transfer. IEEE Trans. Neural Syst. Rehabil. Eng. 17(5), 438–444 (2009).
  • Marasco PD, Kim K, Colgate JE, Peshkin MA, Kuiken TA. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134(Pt 3), 747–758 (2011).
  • Panarese A, Edin BB, Vecchi F, Carrozza MC, Johansson RS. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand. IEEE Trans. Neural Syst. Rehabil. Eng. 17(6), 560–567 (2009).
  • Simpson DC. The control and supply of a multimovement externally powered upper limb prosthesis. Proceedings of the Fifth International Symposium on Advances in External Control of Human Extremities. 247–254 (1975).
  • Weir RF, Heckathorne CW, Childress DS. Cineplasty as a control input for externally powered prosthetic components. J. Rehabil. Res. Dev. 38(4), 357–363 (2001).
  • Gillespie B, Baker J, O’Malley M, Shewokis P, Contreras-Vidal JL. Functionally biarticular control for smart prosthetics. Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. 627–628 (2009).
  • Goodwin GM, McCloskey DI, Matthews PB. The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95(4), 705–748 (1972).
  • Roll JP, Gilhodes JC. Proprioceptive sensory codes mediating movement trajectory perception: human hand vibration-induced drawing illusions. Can. J. Physiol. Pharmacol. 73(2), 295–304 (1995).
  • Meek SG, Jacobsen SC, Goulding PP. Extended physiologic taction: design and evaluation of a proportional force feedback system. J. Rehabil. Res. Dev. 26(3), 53–62 (1989).
  • Patterson PE, Katz JA. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J. Rehabil. Res. Dev. 29(1), 1–8 (1992).
  • Antfolk C, Cipriani C, Carrozza MC et al. Transfer of tactile input from an artificial hand to the forearm: experiments in amputees and able-bodied volunteers. Disabil. Rehabil. Assist. Technol. doi:10.3109/17483107.2012.713435 (2012) (Epub ahead of print).
  • Kim K, Colgate JE, Santos-Munne JJ, Makhlin A, Peshkin MA. On the design of Miniature Haptic Devices for upper extremity prosthetics. IEEE-ASME Trans. Mechatron. 15(1), 27–39 (2010).
  • Clippinger FW, Avery R, Titus BR. A sensory feedback system for an upper-limb amputation prosthesis. Bull. Prosthet. Res. 22, 247–258 (1974).
  • Horch K, Meek S, Taylor TG, Hutchinson DT. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 19(5), 483–489 (2011).

Patent

  • Conzelman JE, Ellis HB, O’Brien CW: US2656545 (1953).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.