238
Views
5
CrossRef citations to date
0
Altmetric
Review

Defining the indications, types and biomaterials of corpectomy cages in the thoracolumbar spine

, , &
Pages 269-279 | Published online: 09 Jan 2014

References

  • Korovessis P, Repantis T, Iliopoulos P, Hadjipavlou A. Beneficial influence of titanium mesh cage on infection healing and spinal reconstruction in hematogenous septic spondylitis: a retrospective analysis of surgical outcome of twenty-five consecutive cases and review of literature. Spine 33(21), E759–E767 (2008).
  • Lu DC, Wang V, Chou D. The use of allograft or autograft and expandable titanium cages for the treatment of vertebral osteomyelitis. Neurosurgery 64(1), 122–129; discussion 129 (2009).
  • Sasani M, Ozer AF. Single-stage posterior corpectomy and expandable cage placement for treatment of thoracic or lumbar burst fractures. Spine 34(1), E33–E40 (2009).
  • Shen FH, Marks I, Shaffrey C, Ouellet J, Arlet V. The use of an expandable cage for corpectomy reconstruction of vertebral body tumors through a posterior extracavitary approach: a multicenter consecutive case series of prospectively followed patients. Spine J. 8(2), 329–339 (2008).
  • Thongtrangan I, Balabhadra RS, Le H, Park J, Kim DH. Vertebral body replacement with an expandable cage for reconstruction after spinal tumor resection. Neurosurg. Focus 15(5), E8 (2003).
  • Zhu Y, Zhao H, Qiu GX et al. Single-stage posterior spondylectomy, circumferential decompression and reconstruction using mesh cage for spinal tumors. Chin. Med. Sci. J. 24(3), 172–177 (2009).
  • Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J. Bone Joint Surg. Am. 84-A(5), 716–720 (2002).
  • Silber JS, Anderson DG, Daffner SD et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28(2), 134–139 (2003).
  • Gilbert RW, Kim JH, Posner JB. Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann. Neurol. 3(1), 40–51 (1978).
  • Findlay GF. Adverse effects of the management of malignant spinal cord compression. J. Neurol. Neurosurg. Psychiatr. 47(8), 761–768 (1984).
  • Patchell RA, Tibbs PA, Regine WF et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366(9486), 643–648 (2005).
  • Wang JC, Boland P, Mitra N et al. Single-stage posterolateral transpedicular approach for resection of epidural metastatic spine tumors involving the vertebral body with circumferential reconstruction: results in 140 patients. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J. Neurosurg. Spine 1(3), 287–298 (2004).
  • Street J, Fisher C, Sparkes J et al. Single-stage posterolateral vertebrectomy for the management of metastatic disease of the thoracic and lumbar spine: a prospective study of an evolving surgical technique. J. Spinal Disord. Tech. 20(7), 509–520 (2007).
  • Krishnan EC, Nelson C, Neff JR. Thermodynamic considerations of acrylic cement implant at the site of giant cell tumors of the bone. Med. Phys. 13(2), 233–239 (1986).
  • Becker WT, Dohle J, Bernd L et al. Local recurrence of giant cell tumor of bone after intralesional treatment with and without adjuvant therapy. J. Bone Joint Surg. Am. 90(5), 1060–1067 (2008).
  • Toksvig-Larsen S, Johnsson R, Strömqvist B. Heat generation and heat protection in methylmethacrylate cementation of vertebral bodies. A cadaver study evaluating different clinical possibilities of dural protection from heat during cement curing. Eur. Spine J. 4(1), 15–17 (1995).
  • Hunt T, Shen FH, Arlet V. Expandable cage placement via a posterolateral approach in lumbar spine reconstructions. Technical note. J. Neurosurg. Spine 5(3), 271–274 (2006).
  • Viswanathan A, Abd-El-Barr MM, Doppenberg E et al. Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients. Eur. Spine J. 21(1), 84–92 (2012).
  • Eleraky M, Papanastassiou I, Tran ND, Dakwar E, Vrionis FD. Comparison of polymethylmethacrylate versus expandable cage in anterior vertebral column reconstruction after posterior extracavitary corpectomy in lumbar and thoraco-lumbar metastatic spine tumors. Eur. Spine J. 20(8), 1363–1370 (2011).
  • Pelker RR, Friedlaender GE, Panjabi MM, Kapp D, Doganis A. Radiation-induced alterations of fracture healing biomechanics. J. Orthop. Res. 2(1), 90–96 (1984).
  • Cantor JB, Lebwohl NH, Garvey T, Eismont FJ. Nonoperative management of stable thoracolumbar burst fractures with early ambulation and bracing. Spine 18(8), 971–976 (1993).
  • Vaccaro AR, Lehman RA Jr, Hurlbert RJ et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 30(20), 2325–2333 (2005).
  • Shono Y, McAfee PC, Cunningham BW. Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Spine 19(15), 1711–1722 (1994).
  • Uribe JS, Dakwar E, Le TV, Christian G, Serrano S, Smith WD. Minimally invasive surgery treatment for thoracic spine tumor removal: a mini-open, lateral approach. Spine 35(26 Suppl.), S347–S354 (2010).
  • Lee MC, Wang MY, Fessler RG, Liauw J, Kim DH. Instrumentation in patients with spinal infection. Neurosurg. Focus 17(6), E7 (2004).
  • Safran O, Rand N, Kaplan L, Sagiv S, Floman Y. Sequential or simultaneous, same-day anterior decompression and posterior stabilization in the management of vertebral osteomyelitis of the lumbar spine. Spine 23(17), 1885–1890 (1998).
  • Kuklo TR, Potter BK, Bell RS, Moquin RR, Rosner MK. Single-stage treatment of pyogenic spinal infection with titanium mesh cages. J. Spinal Disord. Tech. 19(5), 376–382 (2006).
  • Ruf M, Stoltze D, Merk HR, Ames M, Harms J. Treatment of vertebral osteomyelitis by radical debridement and stabilization using titanium mesh cages. Spine 32(9), E275–E280 (2007).
  • Hofstetter CP, Chou D, Newman CB, Aryan HE, Girardi FP, Härtl R. Posterior approach for thoracolumbar corpectomies with expandable cage placement and circumferential arthrodesis: a multicenter case series of 67 patients. J. Neurosurg. Spine 14(3), 388–397 (2011).
  • Xu R, Garcés-Ambrossi GL, McGirt MJ et al. Thoracic vertebrectomy and spinal reconstruction via anterior, posterior, or combined approaches: clinical outcomes in 91 consecutive patients with metastatic spinal tumors. J. Neurosurg. Spine 11(3), 272–284 (2009).
  • Robinson Y, Tschoeke SK, Kayser R, Boehm H, Heyde CE. Reconstruction of large defects in vertebral osteomyelitis with expandable titanium cages. Int. Orthop. 33(3), 745–749 (2009).
  • Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J. Bone Joint Surg. Br. 78(4), 647–651 (1996).
  • Gracia E, Fernández A, Conchello P et al. Adherence of Staphylococcus aureus slime-producing strain variants to biomaterials used in orthopaedic surgery. Int. Orthop. 21(1), 46–51 (1997).
  • Chang CC, Merritt K. Infection at the site of implanted materials with and without preadhered bacteria. J. Orthop. Res. 12(4), 526–531 (1994).
  • Heary RF, Kheterpal A, Mammis A, Kumar S. Stackable carbon fiber cages for thoracolumbar interbody fusion after corpectomy: long-term outcome analysis. Neurosurgery 68(3), 810–818; discussion 818 (2011).
  • Yang X, Song Y, Liu L, Liu H, Zeng J, Pei F. Anterior reconstruction with nano-hydroxyapatite/polyamide-66 cage after thoracic and lumbar corpectomy. Orthopedics 35(1), e66–e73 (2012).
  • Arnold PM, Baek PN, Bernardi RJ, Luck EA, Larson SJ. Surgical management of nontuberculous thoracic and lumbar vertebral osteomyelitis: report of 33 cases. Surg. Neurol. 47(6), 551–561 (1997).
  • Emery SE, Chan DP, Woodward HR. Treatment of hematogenous pyogenic vertebral osteomyelitis with anterior debridement and primary bone grafting. Spine 14(3), 284–291 (1989).
  • Krödel A, Krüger A, Lohscheidt K, Pfahler M, Refior HJ. Anterior debridement, fusion, and extrafocal stabilization in the treatment of osteomyelitis of the spine. J. Spinal Disord. 12(1), 17–26 (1999).
  • Rath SA, Neff U, Schneider O, Richter HP. Neurosurgical management of thoracic and lumbar vertebral osteomyelitis and discitis in adults: a review of 43 consecutive surgically treated patients. Neurosurgery 38(5), 926–933 (1996).
  • Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26(8), 889–896 (2001).
  • Eck KR, Bridwell KH, Ungacta FF, Lapp MA, Lenke LG, Riew KD. Analysis of titanium mesh cages in adults with minimum two-year follow-up. Spine 25(18), 2407–2415 (2000).
  • Dvorak MF, Kwon BK, Fisher CG, Eiserloh HL 3rd, Boyd M, Wing PC. Effectiveness of titanium mesh cylindrical cages in anterior column reconstruction after thoracic and lumbar vertebral body resection. Spine 28(9), 902–908 (2003).
  • Eck JC. Minimally invasive corpectomy and posterior stabilization for lumbar burst fracture. Spine J. 11(9), 904–908 (2011).
  • Eleraky MA, Duong HT, Esp E, Kim KD. Expandable versus nonexpandable cages for thoracolumbar burst fracture. World Neurosurg. 75(1), 149–154 (2011).
  • Grob D, Daehn S, Mannion AF. Titanium mesh cages (TMC) in spine surgery. Eur. Spine J. 14(3), 211–221 (2005).
  • Liljenqvist U, Lerner T, Bullmann V, Hackenberg L, Halm H, Winkelmann W. Titanium cages in the surgical treatment of severe vertebral osteomyelitis. Eur. Spine J. 12(6), 606–612 (2003).
  • Papanastassiou ID, Jain S, Baaj AA, Eleraky M, Papagelopoulos PJ, Vrionis FD. Vertebrectomy and expandable cage placement via a one-stage, one-position anterolateral retroperitoneal approach in L5 tumors. J. Surg. Oncol. 104(5), 552–558 (2011).
  • Morales Alba NA. Posterior placement of an expandable cage for lumbar vertebral body replacement in oncologic surgery by posterior simple approach: technical note. Spine 33(23), E901–E905 (2008).
  • Arts MP, Peul WC. Vertebral body replacement systems with expandable cages in the treatment of various spinal pathologies: a prospectively followed case series of 60 patients. Neurosurgery 63(3), 537–544; discussion 544–535 (2008).
  • Chou D, Lu DC, Weinstein P, Ames CP. Adjacent-level vertebral body fractures after expandable cage reconstruction. J. Neurosurg. Spine 8(6), 584–588 (2008).
  • Keshavarzi S, Newman CB, Ciacci JD, Aryan HE. Expandable titanium cages for thoracolumbar vertebral body replacement: initial clinical experience and review of the literature. Am J. Orthop. 40(3), E35–E39 (2011).
  • Smith WD, Dakwar E, Le TV, Christian G, Serrano S, Uribe JS. Minimally invasive surgery for traumatic spinal pathologies: a mini-open, lateral approach in the thoracic and lumbar spine. Spine 35(26 Suppl.), S338–S346 (2010).
  • Wang MY, Kim DH, Kim KA. Correction of late traumatic thoracic and thoracolumbar kyphotic spinal deformities using posteriorly placed intervertebral distraction cages. Neurosurgery 62(3 Suppl. 1), 162–171; discussion 171 (2008).
  • Scheufler KM. Technique and clinical results of minimally invasive reconstruction and stabilization of the thoracic and thoracolumbar spine with expandable cages and ventrolateral plate fixation. Neurosurgery 61(4), 798–808; discussion 808 (2007).
  • Snell BE, Nasr FF, Wolfla CE. Single-stage thoracolumbar vertebrectomy with circumferential reconstruction and arthrodesis: surgical technique and results in 15 patients. Neurosurgery 58(4 Suppl. 2), ONS–263–268 (2006).
  • Ernstberger T, Kögel M, König F, Schultz W. Expandable vertebral body replacement in patients with thoracolumbar spine tumors. Arch. Orthop. Trauma Surg. 125(10), 660–669 (2005).
  • Pekmezci M, Tang JA, Cheng L et al. Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model: fatigue characteristics. J. Spinal Disord. Tech. doi:10.3171/2012.7.spine12171 (2012) (Epub ahead of print).
  • Yeung KW, Poon RW, Chu PK et al. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. J. Biomed. Mater. Res. A 82(2), 403–414 (2007).
  • Moon SM, Ingalhalikar A, Highsmith JM, Vaccaro AR. Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model. Spine J. 9(4), 330–335 (2009).
  • Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32), 4845–4869 (2007).
  • Tullberg T. Failure of a carbon fiber implant. A case report. Spine 23(16), 1804–1806 (1998).
  • Krammer M, Dietl R, Lumenta CB et al. Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages. Acta Neurochir. 143(12), 1217–1222 (2001).
  • Matsui H, Tatezaki S, Tsuji H. Ceramic vertebral body replacement for metastatic spine tumors. J. Spinal Disord. 7(3), 248–254 (1994).
  • Lu WW, Zhao F, Luk KD et al. Controllable porosity hydroxyapatite ceramics as spine cage: fabrication and properties evaluation. J. Mater. Sci. Mater. Med. 14(12), 1039–1046 (2003).
  • Bianchi C, Ballard JL, Abou-Zamzam AM, Teruya TH, Abu-Assal ML. Anterior retroperitoneal lumbosacral spine exposure: operative technique and results. Ann. Vasc. Surg. 17(2), 137–142 (2003).
  • Wood KB, Devine J, Fischer D, Dettori JR, Janssen M. Vascular injury in elective anterior lumbosacral surgery. Spine 35(9 Suppl.), S66–S75 (2010).
  • Sasso RC, Kenneth Burkus J, LeHuec JC. Retrograde ejaculation after anterior lumbar interbody fusion: transperitoneal versus retroperitoneal exposure. Spine 28(10), 1023–1026 (2003).
  • Muhlbauer M, Pfisterer W, Eyb R, Knosp E. Minimally invasive retroperitoneal approach for lumbar corpectomy and reconstruction. Technical note. Neurosurg. Focus 7(6), e4 (1999).
  • Papanastassiou ID, Eleraky M, Vrionis FD. Contralateral femoral nerve compression: an unrecognized complication after extreme lateral interbody fusion (XLIF). J. Clin. Neurosci. 18(1), 149–151 (2011).
  • McDonnell MF, Glassman SD, Dimar JR 2nd, Puno RM, Johnson JR. Perioperative complications of anterior procedures on the spine. J. Bone Joint Surg. Am. 78(6), 839–847 (1996).
  • McCormick PC. Retropleural approach to the thoracic and thoracolumbar spine. Neurosurgery 37(5), 908–914 (1995).
  • Pflugmacher R, Schleicher P, Schaefer J et al. Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine. Spine 29(13), 1413–1419 (2004).
  • Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 6(4), 435–443 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.