1,581
Views
14
CrossRef citations to date
0
Altmetric
Review

The use of proton-beam therapy in the treatment of non-small-cell lung cancer

&
Pages 239-245 | Published online: 09 Jan 2014

References

  • Wilson RR. Radiological use of fast protons. Radiology 47(5), 487–491 (1946).
  • International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting proton-beam therapy (ICRU Report 78). J. ICRU 7(2), (2007).
  • Breuer H, Smit BJ. Proton Therapy and Radio-Surgery (1st Edition). Springer, Berlin, Germany, 40 (2000).
  • Shioyama Y, Tokuuye K, Okumura T et al. Clinical evaluation of proton radiotherapy for non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 56(1), 7–13 (2003).
  • Inada T, Tsuji H, Hayakawa Y, Maruhashi A, Tsujii H. Proton irradiation synchronized with respiratory cycle. Nihon Igaku Hoshasen. Gakkai Zasshi. 52(8), 1161–1167 (1992).
  • Kang Y, Zhang X, Chang JY et al. 4D Proton treatment planning strategy for mobile lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 67(3), 906–914 (2007).
  • Rietzel E, Chen GT, Choi NC, Willet CG. Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int. J. Radiat. Oncol. Biol. Phys. 61(5), 1535–1550 (2005).
  • Chang JY, Komaki R, Lu C et al. Phase II study of high-dose proton therapy with concurrent chemotherapy for unresectable stage III nonsmall cell lung cancer. Cancer 117(20), 4707–4713 (2011).
  • Engelsman M, Kooy HM. Target volume dose considerations in proton beam treatment planning for lung tumors. Med. Phys. 32(12), 3549–3557 (2005).
  • Lee CH, Tait D, Nahum AE, Webb S. Comparison of proton therapy and conformal x-ray therapy in non-small cell lung cancer (NSCLC). Br. J. Radiol. 72(863), 1078–1084 (1999).
  • Moyers MF, Miller DW, Bush DA, Slater JD. Methodologies and tools for proton beam design for lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 49(5), 1429–1438 (2001).
  • Park PC, Zhu XR, Lee AK et al. A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties. Int. J. Radiat. Oncol. Biol. Phys. 82(2), e329–e336 (2012).
  • Paganetti H, Niemierko A, Ancukiewicz M et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int. J. Radiat. Oncol. Biol. Phys. 53(2), 407–421 (2002).
  • Perez CA. Principles and Practice of Radiation Oncology (4th Edition). Perez CA, Brady LW, Halperin EC, Schmidt-Ullrich RK (Eds). Lippincott Williams & Wilkins, MD, USA, 105 (2004).
  • Di Pietro C, Piro S, Tabbì G et al. Cellular and molecular effects of protons: apoptosis induction and potential implications for cancer therapy. Apoptosis 11(1), 57–66 (2006).
  • Gerelchuluun A, Hong Z, Sun L et al. Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV x-rays in human tumour cell lines. Int. J. Radiat. Biol. 87(1), 57–70 (2011).
  • Timmerman R, Paulus R, Galvin J et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303(11), 1070–1076 (2010).
  • Nihei K, Ogino T, Ishikura S, Nishimura H. High-dose proton beam therapy for stage I non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 65(1), 107–111 (2006).
  • Hata M, Tokuuye K, Kagei K et al. Hypofractionated high-dose proton beam therapy for stage I non-small-cell lung cancer: preliminary results of a Phase I/II clinical study. Int. J. Radiat. Oncol. Biol. Phys. 68(3), 786–793 (2007).
  • Iwata H, Murakami M, Demizu Y et al. High-dose proton therapy and carbon-ion therapy for stage I nonsmall cell lung cancer. Cancer 116(10), 2476–2485 (2010).
  • Bush DA, Slater JD, Shin BB, Cheek G, Miller DW, Slater JM. Hypofractionated proton beam radiotherapy for stage I lung cancer. Chest 126(4), 1198–1203 (2004).
  • Nakayama H, Sugahara S, Tokita M et al. Proton beam therapy for patients with medically inoperable stage I non-small-cell lung cancer at the University of Tsukuba. Int. J. Radiat. Oncol. Biol. Phys. 78(2), 467–471 (2010).
  • Grutters JP, Kessels AG, Pijls-Johannesma M, De Ruysscher D, Joore MA, Lambin P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother. Oncol. 95(1), 32–40 (2010).
  • Chang JY, Zhang X, Wang X et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage I or stage III non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 65(4), 1087–1096 (2006).
  • Hoppe BS, Huh S, Flampouri S et al. Double-scattered proton-based stereotactic body radiotherapy for stage I lung cancer: a dosimetric comparison with photon-based stereotactic body radiotherapy. Radiother. Oncol. 97(3), 425–430 (2010).
  • Register SP, Zhang X, Mohan R, Chang JY. Proton stereotactic body radiation therapy for clinically challenging cases of centrally and superiorly located stage I non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 80(4), 1015–1022 (2011).
  • Westover KD, Seco J, Adams JA et al. Proton SBRT for medically inoperable stage I NSCLC. J. Thorac. Oncol. 7(6), 1021–1025 (2012).
  • Seco J, Panahandeh HR, Westover K, Adams J, Willers H. Treatment of non-small cell lung cancer patients with proton beam-based stereotactic body radiotherapy: dosimetric comparison with photon plans highlights importance of range uncertainty. Int. J. Radiat. Oncol. Biol. Phys. 83(1), 354–361 (2012).
  • Stephans KL, Djemil T, Reddy CA et al. Comprehensive analysis of pulmonary function Test (PFT) changes after stereotactic body radiotherapy (SBRT) for stage I lung cancer in medically inoperable patients. J. Thorac. Oncol. 4(7), 838–844 (2009).
  • Rancati T, Ceresoli GL, Gagliardi G, Schipani S, Cattaneo GM. Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother. Oncol. 67(3), 275–283 (2003).
  • Hernando ML, Marks LB, Bentel GC et al. Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 51(3), 650–659 (2001).
  • Movsas B, Raffin TA, Epstein AH, Link CJ Jr. Pulmonary radiation injury. Chest 111(4), 1061–1076 (1997).
  • Cox JD, Azarnia N, Byhardt RW, Shin KH, Emami B, Pajak TF. A randomized Phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non-small-cell lung carcinoma: report of Radiation Therapy Oncology Group 83-11. J. Clin. Oncol. 8(9), 1543–1555 (1990).
  • Saunders M, Dische S, Barrett A, Harvey A, Gibson D, Parmar M. Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steering Committee. Lancet 350(9072), 161–165 (1997).
  • Mehta MP, Tannehill SP, Adak S et al. Phase II trial of hyperfractionated accelerated radiation therapy for nonresectable non-small-cell lung cancer: results of Eastern Cooperative Oncology Group 4593. J. Clin. Oncol. 16(11), 3518–3523 (1998).
  • Yuan S, Sun X, Li M et al. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III nonsmall cell lung cancer. Am. J. Clin. Oncol. 30(3), 239–244 (2007).
  • Socinski MA, Rosenman JG, Halle J et al. Dose-escalating conformal thoracic radiation therapy with induction and concurrent carboplatin/paclitaxel in unresectable stage IIIA/B nonsmall cell lung carcinoma: a modified Phase I/II trial. Cancer 92(5), 1213–1223 (2001).
  • Socinski MA, Morris DE, Halle JS et al. Induction and concurrent chemotherapy with high-dose thoracic conformal radiation therapy in unresectable stage IIIA and IIIB non-small-cell lung cancer: a dose-escalation Phase I trial. J. Clin. Oncol. 22(21), 4341–4350 (2004).
  • Socinski MA, Blackstock AW, Bogart JA et al. Randomized Phase II trial of induction chemotherapy followed by concurrent chemotherapy and dose-escalated thoracic conformal radiotherapy (74 Gy) in stage III non-small-cell lung cancer: CALGB 30105. J. Clin. Oncol. 26(15), 2457–2463 (2008).
  • Rosenman JG, Halle JS, Socinski MA et al. High-dose conformal radiotherapy for treatment of stage IIIA/IIIB non-small-cell lung cancer: technical issues and results of a Phase I/II trial. Int. J. Radiat. Oncol. Biol. Phys. 54(2), 348–356 (2002).
  • Blackstock AW, Ho C, Butler J et al. Phase Ia/Ib chemo-radiation trial of gemcitabine and dose-escalated thoracic radiation in patients with stage III A/B non-small cell lung cancer. J. Thorac. Oncol. 1(5), 434–440 (2006).
  • Hayman JA, Martel MK, Ten Haken RK et al. Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a Phase I trial. J. Clin. Oncol. 19(1), 127–136 (2001).
  • Schild SE, McGinnis WL, Graham D et al. Results of a Phase I trial of concurrent chemotherapy and escalating doses of radiation for unresectable non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 65(4), 1106–1111 (2006).
  • Machtay M, Bae K, Movsas B et al. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 82(1), 425–434 (2012).
  • Wang L, Correa CR, Zhao L et al. The effect of radiation dose and chemotherapy on overall survival in 237 patients with stage III non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 73(5), 1383–1390 (2009).
  • Kong FM, Ten Haken RK, Schipper MJ et al. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int. J. Radiat. Oncol. Biol. Phys. 63(2), 324–333 (2005).
  • Bradley RP, Komaki R, Masters G et al. A randomized Phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy +/− cetuximab for stage IIIa/IIIb non-small cell lung cancer: preliminary findings on radiation dose in RTOG 0617. Presented at: 53rd Annual Meeting of the American Society of Radiation Oncology. Miami, FL, USA, 2–6 October 2011.
  • Cox JD. Are the results of RTOG 0617 mysterious? Int. J. Radiat. Oncol. Biol. Phys. 82(3), 1042–1044 (2012).
  • Roelofs E, Engelsman M, Rasch C et al.; ROCOCO Consortium. Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer. J. Thorac. Oncol. 7(1), 165–176 (2012).
  • Nichols RC, Huh SN, Henderson RH et al. Proton radiation therapy offers reduced normal lung and bone marrow exposure for patients receiving dose-escalated radiation therapy for unresectable stage III non-small-cell lung cancer: a dosimetric study. Clin. Lung Cancer 12(4), 252–257 (2011).
  • Salama JK, Stinchcombe TE, Gu L et al.; Cancer and Leukemia Group B. Pulmonary toxicity in stage III non-small cell lung cancer patients treated with high-dose (74 Gy) 3-dimensional conformal thoracic radiotherapy and concurrent chemotherapy following induction chemotherapy: a secondary analysis of Cancer and Leukemia Group B (CALGB) trial 30105. Int. J. Radiat. Oncol. Biol. Phys. 81(4), e269–e274 (2011).
  • Koay EJ, Lege D, Mohan R, Komaki R, Cox JD, Chang JY. Adaptive/nonadaptive proton radiation planning and outcomes in a Phase II trial for locally advanced non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 84(5), 1093–1100 (2012).
  • Oshiro Y, Mizumoto M, Okumura T et al. Results of proton beam therapy without concurrent chemotherapy for patients with unresectable stage III non-small cell lung cancer. J. Thorac. Oncol. 7(2), 370–375 (2012).
  • Hoppe BS, Flampouri S, Henderson RH et al. Proton therapy with concurrent chemotherapy for non-small-cell lung cancer: technique and early results. Clin. Lung Cancer 13(5), 352–358 (2012).
  • Suit H, Kooy H, Trofimov A et al. Should positive Phase III clinical trial data be required before proton beam therapy is more widely adopted? No. Radiother. Oncol. 86(2), 148–153 (2008).
  • Bush DA. Proton radiation therapy for lung cancer: is there enough evidence? Oncology (Williston Park, NY) 24(11), 1052–1057 (2010).
  • Onishi H, Shirato H, Nagata Y et al. Stereotactic body radiotherapy (SBRT) for operable stage I non-small-cell lung cancer: can SBRT be comparable to surgery? Int. J. Radiat. Oncol. Biol. Phys. 81(5), 1352–1358 (2011).
  • Louie AV, Rodrigues G, Hannouf M et al. Stereotactic body radiotherapy versus surgery for medically operable stage I non-small-cell lung cancer: a Markov model-based decision analysis. Int. J. Radiat. Oncol. Biol. Phys. 81(4), 964–973 (2011).
  • Stuschke M, Kaiser A, Pöttgen C, Lübcke W, Farr J. Potentials of robust intensity modulated scanning proton plans for locally advanced lung cancer in comparison to intensity modulated photon plans. Radiother. Oncol. 104(1), 45–51 (2012).
  • Meyer J, Bluett J, Amos R et al. Spot scanning proton beam therapy for prostate cancer: treatment planning technique and analysis of consequences of rotational and translational alignment errors. Int. J. Radiat. Oncol. Biol. Phys. 78(2), 428–434 (2010).
  • Phillips MH, Pedroni E, Blattmann H, Boehringer T, Coray A, Scheib S. Effects of respiratory motion on dose uniformity with a charged particle scanning method. Phys. Med. Biol. 37(1), 223–234 (1992).
  • Knopf AC, Hong TS, Lomax A. Scanned proton radiotherapy for mobile targets – the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics. Phys. Med. Biol. 56(22), 7257–7271 (2011).
  • Zenklusen SM, Pedroni E, Meer D, Bula C, Safai S. Preliminary investigations for the option to use fast uniform scanning with compensators on a gantry designed for IMPT. Med. Phys. 38(9), 5208–5216 (2011).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.