76
Views
7
CrossRef citations to date
0
Altmetric
Review

Treatment options for multidrug-resistant nonfermenters

, &
Pages 303-315 | Published online: 10 Jan 2014

References

  • Falagas ME, Karageorgopoulos DE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin. Infect. Dis.46(7), 1121–1122 (2008).
  • Schwaber MJ, Navon-Venezia S, Kaye KS, Ben-Ami R, Schwartz D, Carmeli Y. Clinical and economic impact of bacteremia with extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother.50(4), 1257–1262 (2006).
  • Lee SY, Kotapati S, Kuti JL, Nightingale CH, Nicolau DP. Impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella species on clinical outcomes and hospital costs: a matched cohort study. Infect. Control Hosp. Epidemiol.27(11), 1226–1232 (2006).
  • Critchley IA, Karlowsky JA. Optimal use of antibiotic resistance surveillance systems. Clin. Microbiol. Infect.10(6), 502–511 (2004).
  • Boucher HW, Talbot GH, Bradley JS et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis.48(1), 1–12 (2009).
  • Rice LB. Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin. Infect. Dis.43(Suppl. 2), S100–S105 (2006).
  • Jones RN. Resistance patterns among nosocomial pathogens: trends over the past few years. Chest119(2 Suppl.), S397–S404 (2001).
  • Govan JR, Nelson JW. Microbiology of lung infection in cystic fibrosis. Br. Med. Bull.48(4), 912–930 (1992).
  • Spencker FB, Haupt S, Claros MC et al. Epidemiologic characterization of Pseudomonas aeruginosa in patients with cystic fibrosis. Clin. Microbiol. Infect.6(11), 600–607 (2000).
  • Gales AC, Jones RN, Forward KR, Linares J, Sader HS, Verhoef J. Emerging importance of multidrug-resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features and trends in the SENTRY Antimicrobial Surveillance Program (1997–1999). Clin. Infect. Dis.32(Suppl. 2), S104–S113 (2001).
  • McGowan JE Jr. Resistance in nonfermenting Gram-negative bacteria: multidrug resistance to the maximum. Am. J. Med.119(6 Suppl. 1), S29–S36 (2006).
  • Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care Med.27(5), 887–892 (1999).
  • Jain R, Danziger LH. Multidrug-resistant Acinetobacter infections: an emerging challenge to clinicians. Ann. Pharmacother.38(9), 1449–1459 (2004).
  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis.39(3), 309–317 (2004).
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother.39(6), 1211–1233 (1995).
  • Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J. Med. Microbiol.58(Pt 9), 1133–1148 (2009).
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev.22(4), 582–610 (2009).
  • Henrichfreise B, Wiegand I, Pfister W, Wiedemann B. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob. Agents Chemother.51(11), 4062–4070 (2007).
  • Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev.67(4), 593–656 (2003).
  • Quinn JP, Darzins A, Miyashiro D, Ripp S, Miller RV. Imipenem resistance in Pseudomonas aeruginosa PAO: mapping of the OprD2 gene. Antimicrob. Agents Chemother.35(4), 753–755 (1991).
  • Acar JF. Therapy for lower respiratory tract infections with imipenem/cilastatin: a review of worldwide experience. Rev. Infect. Dis.7(Suppl. 3), S513–S517 (1985).
  • Stover CK, Pham XQ, Erwin AL et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406(6799), 959–964 (2000).
  • Li Y, Mima T, Komori Y et al. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J. Antimicrob. Chemother.52(4), 572–575 (2003).
  • Ochs MM, McCusker MP, Bains M, Hancock RE. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob. Agents Chemother.43(5), 1085–1090 (1999).
  • Livermore DM. Interplay of impermeability and chromosomal β-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother.36(9), 2046–2048 (1992).
  • Picao RC, Poirel L, Gales AC, Nordmann P. Diversity of β-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob. Agents Chemother.53(9), 3908–3913 (2009).
  • Ambler RP. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci.289(1036), 321–331 (1980).
  • Mansour W, Dahmen S, Poirel L et al. Emergence of SHV-2a extended-spectrum β-lactamases in clinical isolates of Pseudomonas aeruginosa in a university hospital in Tunisia. Microb. Drug Resist.15(4), 295–301 (2009).
  • Viedma E, Juan C, Acosta J et al. Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum β-lactamases GES-1 and GES-5 in Spain. Antimicrob. Agents Chemother.53(11), 4930–4933 (2009).
  • Juan C, Mulet X, Zamorano L, Alberti S, Perez JL, Oliver A. Detection of the novel extended-spectrum β-lactamase OXA-161 from a plasmid-located integron in Pseudomonas aeruginosa clinical isolates from Spain. Antimicrob. Agents Chemother.53(12), 5288–5290 (2009).
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev.18(2), 306–325 (2005).
  • Garza-Ramos U, Tinoco P, Rojas T et al. Molecular characterization of integron class 1 (In196) encoding the VIM-2 metallo-β-lactamase of Pseudomonas aeruginosa isolated from a hospital environment. J. Chemother.21(5), 590–591 (2009).
  • Azucena E, Mobashery S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist. Updat.4(2), 106–117 (2001).
  • Kim C, Villegas-Estrada A, Hesek D, Mobashery S. Mechanistic characterization of the bifunctional aminoglycoside-modifying enzyme AAC(3)-Ib/AAC(6’)-Ib’ from Pseudomonas aeruginosa. Biochemistry46(17), 5270–5282 (2007).
  • Zeng L, Jin S. Aph(3’)-IIb, a gene encoding an aminoglycoside-modifying enzyme, is under the positive control of surrogate regulator HpaA. Antimicrob. Agents Chemother.47(12), 3867–3876 (2003).
  • Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis.7(2), 337–341 (2001).
  • Lee JK, Lee YS, Park YK, Kim BS. Alterations in the GyrA and GyrB subunits of topoisomerase II and the ParC and ParE subunits of topoisomerase IV in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa. Int. J. Antimicrob. Agents25(4), 290–295 (2005).
  • Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc. Natl Acad. Sci. USA99(8), 5638–5642 (2002).
  • Jacoby GA. Mechanisms of resistance to quinolones. Clin. Infect. Dis.41(Suppl. 2), S120–S126 (2005).
  • Van LM, Goossens H. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin. Microbiol. Infect.10(8), 684–704 (2004).
  • Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev.21(3), 538–582 (2008).
  • Clark RB. Imipenem resistance among Acinetobacter baumannii: association with reduced expression of a 33–36 kDa outer membrane protein. J. Antimicrob. Chemother.38(2), 245–251 (1996).
  • Quale J, Bratu S, Landman D, Heddurshetti R. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin. Infect. Dis.37(2), 214–220 (2003).
  • Limansky AS, Mussi MA, Viale AM. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance. J. Clin. Microbiol.40(12), 4776–4778 (2002).
  • Bou G, Cervero G, Dominguez MA, Quereda C, Martinez-Beltran J. Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of β-lactamases. J. Clin. Microbiol.38(9), 3299–3305 (2000).
  • Gribun A, Nitzan Y, Pechatnikov I, Hershkovits G, Katcoff DJ. Molecular and structural characterization of the HMP-AB gene encoding a pore-forming protein from a clinical isolate of Acinetobacter baumannii. Curr. Microbiol.47(5), 434–443 (2003).
  • Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother.45(12), 3375–3380 (2001).
  • Marchand I, Damier-Piolle L, Courvalin P, Lambert T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob. Agents Chemother.48(9), 3298–3304 (2004).
  • Lin L, Ling BD, Li XZ. Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumannii – Acinetobacter calcoaceticus complex. Int. J. Antimicrob. Agents33(1), 27–32 (2009).
  • Joly-Guillo ML, Vallee E, Bergogne-Berezin E, Philippon A. Distribution of β-lactamases and phenotype analysis in clinical strains of Acinetobacter calcoaceticus. J. Antimicrob. Chemother.22(5), 597–604 (1988).
  • Blechschmidt B, Borneleit P, Kleber HP. Purification and characterization of an extracellular β-lactamase produced by Acinetobacter calcoaceticus. J. Gen. Microbiol.138(6), 1197–1202 (1992).
  • Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J. Antimicrob. Chemother.52(4), 629–635 (2003).
  • Mammeri H, Poirel L, Mangeney N, Nordmann P. Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to β-lactams. Antimicrob. Agents Chemother.47(5), 1536–1542 (2003).
  • Lopez-Hernandez S, Alarcon T, Lopez-Brea M. Biochemical characterization of chromosomal cephalosporinases from isolates belonging to the Acinetobacter baumannii complex. Clin. Microbiol. Infect.7(4), 218–226 (2001).
  • Beceiro A, Dominguez L, Ribera A et al. Molecular characterization of the gene encoding a new AmpC β-lactamase in a clinical strain of Acinetobacter genomic species 3. Antimicrob. Agents Chemother.48(4), 1374–1378 (2004).
  • Perilli M, Felici A, Oratore A et al. Characterization of the chromosomal cephalosporinases produced by Acinetobacter lwoffii and Acinetobacter baumannii clinical isolates. Antimicrob. Agents Chemother.40(3), 715–719 (1996).
  • Bou G, Martinez-Beltran J. Cloning, nucleotide sequencin, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother.44(2), 428–432 (2000).
  • Hujer KM, Hamza NS, Hujer AM et al. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob. Agents Chemother.49(7), 2941–2948 (2005).
  • Mak JK, Kim MJ, Pham J, Tapsall J, White PA. Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii. J. Antimicrob. Chemother.63(1), 47–54 (2009).
  • Vila J, Marcos A, Marco F et al.In vitro antimicrobial production of β-lactamases, aminoglycoside-modifying enzymes and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother.37(1), 138–141 (1993).
  • Huang ZM, Mao PH, Chen Y, Wu L, Wu J. [Study on the molecular epidemiology of SHV type β-lactamase-encoding genes of multiple-drug-resistant Acinetobacter baumannii]. Zhonghua Liu Xing Bing Xue Za Zhi25(5), 425–427 (2004).
  • Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev.9(2), 148–165 (1996).
  • Nagano N, Nagano Y, Cordevant C, Shibata N, Arakawa Y. Nosocomial transmission of CTX-M-2 β-lactamase-producing Acinetobacter baumannii in a neurosurgery ward. J. Clin. Microbiol.42(9), 3978–3984 (2004).
  • Vahaboglu H, Ozturk R, Aygun G et al. Widespread detection of PER-1-type extended-spectrum β-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob. Agents Chemother.41(10), 2265–2269 (1997).
  • Yong D, Shin JH, Kim S et al. High prevalence of PER-1 extended-spectrum β-lactamase-producing Acinetobacter spp. in Korea. Antimicrob. Agents Chemother.47(5), 1749–1751 (2003).
  • Poirel L, Karim A, Mercat A et al. Extended-spectrum β-lactamase-producing strain of Acinetobacter baumannii isolated from a patient in France. J. Antimicrob. Chemother.43(1), 157–158 (1999).
  • Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J. Clin. Microbiol.41(8), 3542–3547 (2003).
  • Carbonne A, Naas T, Blanckaert K et al. Investigation of a nosocomial outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a hospital setting. J. Hosp. Infect.60(1), 14–18 (2005).
  • Navia MM, Ruiz J, Vila J. Characterization of an integron carrying a new class D β-lactamase (OXA-37) in Acinetobacter baumannii. Microb. Drug Resist.8(4), 261–265 (2002).
  • Vila J, Navia M, Ruiz J, Casals C. Cloning and nucleotide sequence analysis of a gene encoding an OXA-derived β-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother.41(12), 2757–2759 (1997).
  • Poirel L, Gerome P, De CC, Stephanazzi J, Naas T, Nordmann P. Integron-located oxa-32 gene cassette encoding an extended-spectrum variant of OXA-2 β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother.46(2), 566–569 (2002).
  • Poirel L, Girlich D, Naas T, Nordmann P. OXA-28, an extended-spectrum variant of OXA-10 β-lactamase from Pseudomonas aeruginosa and its plasmid- and integron-located gene. Antimicrob. Agents Chemother.45(2), 447–453 (2001).
  • Zarrilli R, Crispino M, Bagattini M et al. Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. J. Clin. Microbiol.42(3), 946–953 (2004).
  • Yum JH, Yi K, Lee H et al. Molecular characterization of metallo-β-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the bla(VIM-2) gene cassettes. J. Antimicrob. Chemother.49(5), 837–840 (2002).
  • Lee K, Ha GY, Shin BM et al. Metallo-β-lactamase-producing Gram-negative bacilli in Korean Nationwide Surveillance of Antimicrobial Resistance group hospitals in 2003: continued prevalence of VIM-producing Pseudomonas spp. and increase of IMP-producing Acinetobacter spp. Diagn. Microbiol. Infect. Dis.50(1), 51–58 (2004).
  • Lee K, Yum JH, Yong D et al. Novel acquired metallo-β-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother.49(11), 4485–4491 (2005).
  • Seward RJ, Lambert T, Towner KJ. Molecular epidemiology of aminoglycoside resistance in Acinetobacter spp. J. Med. Microbiol.47(5), 455–462 (1998).
  • Nemec A, Dolzani L, Brisse S, van den Broek P, Dijkshoorn L. Diversity of aminoglycoside-resistance genes and their association with class 1 integrons among strains of pan-European Acinetobacter baumannii clones. J. Med. Microbiol.53(Pt 12), 1233–1240 (2004).
  • Vila J, Ruiz J, Goni P, Marcos A, Jimenez de AT. Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother.39(5), 1201–1203 (1995).
  • Vila J, Ruiz J, Goni P, Jimenez de AT. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J. Antimicrob. Chemother.39(6), 757–762 (1997).
  • Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J. Antimicrob. Chemother.56(3), 463–469 (2005).
  • Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS. First occurrence of a Pseudomonas aeruginosa isolate in the United States producing an IMP metallo-β-lactamase, IMP-18. Antimicrob. Agents Chemother.50(6), 2272–2273 (2006).
  • Lolans K, Queenan AM, Bush K, Sahud A, Quinn JP. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-β-lactamase (VIM-2) in the United States. Antimicrob. Agents Chemother.49(8), 3538–3540 (2005).
  • Deplano A, Denis O, Poirel L et al. Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J. Clin. Microbiol.43(3), 1198–1204 (2005).
  • Pillar CM, Torres MK, Brown NP, Shah D, Sahm DF. In vitro activity of doripenem, a carbapenem for the treatment of challenging infections caused by Gram-negative bacteria, against recent clinical isolates from the United States. Antimicrob. Agents Chemother.52(12), 4388–4399 (2008).
  • Rahal JJ. Antimicrobial resistance among and therapeutic options against gram-negative pathogens. Clin. Infect. Dis.49(Suppl. 1), S4–S10 (2009).
  • Livermore DM. Doripenem: antimicrobial profile and clinical potential. Diagn. Microbiol. Infect. Dis.63(4), 455–458 (2009).
  • Castanheira M, Jones RN, Livermore DM. Antimicrobial activities of doripenem and other carbapenems against Pseudomonas aeruginosa, other nonfermentative bacilli, and Aeromonas spp. Diagn. Microbiol. Infect. Dis.63(4), 426–433 (2009).
  • Higgins PG, Wisplinghoff H, Stefanik D, Seifert H. In vitro activities of the β-lactamase inhibitors clavulanic acid, sulbactam, and tazobactam alone or in combination with β-lactams against epidemiologically characterized multidrug-resistant Acinetobacter baumannii strains. Antimicrob. Agents Chemother.48(5), 1586–1592 (2004).
  • Akova M. Sulbactam-containing β-lactamase inhibitor combinations. Clin. Microbiol. Infect.14(Suppl. 1), 185–188 (2008).
  • Montero A, Ariza J, Corbella X et al. Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J. Antimicrob. Chemother.54(6), 1085–1091 (2004).
  • Kuo LC, Lai CC, Liao CH et al. Multidrug-resistant Acinetobacter baumannii bacteraemia: clinical features, antimicrobial therapy and outcome. Clin. Microbiol. Infect.13(2), 196–198 (2007).
  • Sayin KS, Sacar S, Suzer T et al. [Successful treatment of a patient with multidrug resistant Acinetobacter baumannii meningitis with high dose ampicillin-sulbactam]. Mikrobiyol. Bul.42(2), 353–358 (2008).
  • Betrosian AP, Frantzeskaki F, Xanthaki A, Douzinas EE. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J. Infect.56(6), 432–436 (2008).
  • Ko WC, Lee HC, Chiang SR et al.In vitro and in vivo activity of meropenem and sulbactam against a multidrug-resistant Acinetobacter baumannii strain. J. Antimicrob. Chemother.53(2), 393–395 (2004).
  • Scheetz MH, Qi C, Warren JR et al.In vitro activities of various antimicrobials alone and in combination with tigecycline against carbapenem-intermediate or -resistant Acinetobacter baumannii. Antimicrob. Agents Chemother.51(5), 1621–1626 (2007).
  • Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect. Dis.8(12), 751–762 (2008).
  • Akers KS, Mende K, Yun HC et al. Tetracycline susceptibility testing and resistance genes in isolates of Acinetobacter baumannii–Acinetobacter calcoaceticus complex from a U.S. military hospital. Antimicrob. Agents Chemother.53(6), 2693–2695 (2009).
  • Peleg AY, Adams J, Paterson DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob. Agents Chemother.51(6), 2065–2069 (2007).
  • Principe L, D’Arezzo S, Capone A, Petrosillo N, Visca P. In vitro activity of tigecycline in combination with various antimicrobials against multidrug resistant Acinetobacter baumannii. Ann. Clin. Microbiol. Antimicrob.8, 18 (2009).
  • Karageorgopoulos DE, Kelesidis T, Kelesidis I, Falagas ME. Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections: a review of the scientific evidence. J. Antimicrob. Chemother.62(1), 45–55 (2008).
  • Anthony KB, Fishman NO, Linkin DR, Gasink LB, Edelstein PH, Lautenbach E. Clinical and microbiological outcomes of serious infections with multidrug-resistant Gram-negative organisms treated with tigecycline. Clin. Infect. Dis.46(4), 567–570 (2008).
  • Deamer RL, Dial LK. The evolution of aminoglycoside therapy: a single daily dose. Am. Fam. Physician53(5), 1782–1786 (1996).
  • Doi Y, Husain S, Potoski BA, McCurry KR, Paterson DL. Extensively drug-resistant Acinetobacter baumannii. Emerg. Infect. Dis.15(6), 980–982 (2009).
  • Adams MD, Nickel GC, Bajaksouzian S et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob. Agents Chemother.53(9), 3628–3634 (2009).
  • Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother.53(12), 5150–5154 (2009).
  • Cooperstock MS. Inactivation of endotoxin by polymyxin B. Antimicrob. Agents Chemother.6(4), 422–425 (1974).
  • Morrison DC, Jacobs DM. Inhibition of lipopolysaccharide-initiated activation of serum complement by polymyxin B. Infect. Immun.13(1), 298–301 (1976).
  • Evans ME, Feola DJ, Rapp RP. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant Gram-negative bacteria. Ann. Pharmacother.33(9), 960–967 (1999).
  • Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin. Infect. Dis.40(9), 1333–1341 (2005).
  • Giamarellou H, Antoniadou A, Kanellakopoulou K. Acinetobacter baumannii: a universal threat to public health? Int. J. Antimicrob. Agents32(2), 106–119 (2008).
  • Munoz-Price LS, Weinstein RA. Acinetobacter infection. N. Engl. J. Med.358(12), 1271–1281 (2008).
  • Li J, Turnidge J, Milne R, Nation RL, Coulthard K. In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother.45(3), 781–785 (2001).
  • Conway SP, Etherington C, Munday J, Goldman MH, Strong JJ, Wootton M. Safety and tolerability of bolus intravenous colistin in acute respiratory exacerbations in adults with cystic fibrosis. Ann. Pharmacother.34(11), 1238–1242 (2000).
  • Hartzell JD, Neff R, Ake J et al. Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin. Infect. Dis.48(12), 1724–1728 (2009).
  • Falagas ME, Rafailidis PI. Nephrotoxicity of colistin: new insight into an old antibiotic. Clin. Infect. Dis.48(12), 1729–1731 (2009).
  • Montero M, Horcajada JP, Sorli L et al. Effectiveness and safety of colistin for the treatment of multidrug-resistant Pseudomonas aeruginosa infections. Infection37(5), 461–465 (2009).
  • D’Agata EM. Rapidly rising prevalence of nosocomial multidrug-resistant, Gram-negative bacilli: a 9-year surveillance study. Infect. Control Hosp. Epidemiol.25(10), 842–846 (2004).
  • Karlowsky JA, Draghi DC, Jones ME, Thornsberry C, Friedland IR, Sahm DF. Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob. Agents Chemother.47(5), 1681–1688 (2003).
  • Hilf M, Yu VL, Sharp J, Zuravleff JJ, Korvick JA, Muder RR. Antibiotic therapy for Pseudomonas aeruginosa bacteremia: outcome correlations in a prospective study of 200 patients. Am. J. Med.87(5), 540–546 (1989).
  • Montero A, Ariza J, Corbella X et al. Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J. Antimicrob. Chemother.54(6), 1085–1091 (2004).
  • Saballs M, Pujol M, Tubau F et al. Rifampicin/imipenem combination in the treatment of carbapenem-resistant Acinetobacter baumannii infections. J. Antimicrob. Chemother.58(3), 697–700 (2006).
  • Timurkaynak F, Can F, Azap OK, Demirbilek M, Arslan H, Karaman SO. In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int. J. Antimicrob. Agents27(3), 224–228 (2006).
  • Motaouakkil S, Charra B, Hachimi A et al. Colistin and rifampicin in the treatment of nosocomial infections from multiresistant Acinetobacter baumannii. J. Infect.53(4), 274–278 (2006).
  • Bassetti M, Repetto E, Righi E et al. Colistin and rifampicin in the treatment of multidrug-resistant Acinetobacter baumannii infections. J. Antimicrob. Chemother.61(2), 417–420 (2008).
  • Tascini C, Gemignani G, Ferranti S et al. Microbiological activity and clinical efficacy of a colistin and rifampin combination in multidrug-resistant Pseudomonas aeruginosa infections. J. Chemother.16(3), 282–287 (2004).
  • Aoki N, Tateda K, Kikuchi Y et al. Efficacy of colistin combination therapy in a mouse model of pneumonia caused by multidrug-resistant Pseudomonas aeruginosa. J. Antimicrob. Chemother.63(3), 534–542 (2009).
  • Ullman MA, Hovde LB, Rotschafer JC. The advantage of using sequential exposure to colistin sulfate (C) and meropenem (M) to combat carbapenem-resistant Pseudomonas aeruginosa (CRP). Presented at: 49th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC). San Francisco, CA, USA, 12–15 September 2009.
  • Lodise TP Jr, Lomaestro B, Drusano GL. Piperacillin–tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin. Infect. Dis.44(3), 357–363 (2007).
  • Capitano B, Nicolau DP, Potoski BA et al. Meropenem administered as a prolonged infusion to treat serious Gram-negative central nervous system infections. Pharmacotherapy24(6), 803–807 (2004).
  • Li C, Du X, Kuti JL, Nicolau DP. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob. Agents Chemother.51(5), 1725–1730 (2007).
  • Lorente L, Lorenzo L, Martin MM, Jimenez A, Mora ML. Meropenem by continuous versus intermittent infusion in ventilator-associated pneumonia due to Gram-negative bacilli. Ann. Pharmacother.40(2), 219–223 (2006).
  • Hendlin D, Stapley EO, Jackson M et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science166(901), 122–123 (1969).
  • Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int. J. Antimicrob. Agents34(2), 111–120 (2009).
  • El Solh AA, Alhajhusain A. Update on the treatment of Pseudomonas aeruginosa pneumonia. J. Antimicrob. Chemother.64(2), 229–238 (2009).
  • Shah PM. Parenteral carbapenems. Clin. Microbiol. Infect.14(Suppl. 1), 175–180 (2008).
  • Baum EZ, Crespo-Carbone SM, Morrow BJ et al. Effect of MexXY overexpression on ceftobiprole susceptibility in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.53(7), 2785–2790 (2009).
  • Abrahamian FM, Deblieux PM, Emerman CL et al. Health care-associated pneumonia: identification and initial management in the ED. Am. J. Emerg. Med.26(6 Suppl.), 1–11 (2008).
  • Mesaros N, Nordmann P, Plesiat P et al.Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin. Microbiol. Infect.13(6), 560–578 (2007).
  • Baer M, Sawa T, Flynn P et al. An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect. Immun.77(3), 1083–1090 (2009).
  • Schmidtchen A, Pasupuleti M, Morgelin M et al. Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J. Biol. Chem.284(26), 17584–17594 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.