861
Views
2
CrossRef citations to date
0
Altmetric
Editorial

Can your genes make you more prone to pneumococcal disease?

Pages 967-972 | Published online: 10 Jan 2014

References

  • World Health Organization. Pneumococcal vaccines. Wkly Epidemiol. Rec.14, 110–119 (2003).
  • British Thoracic Society Standards of Care Committee. BTS guidelines for the management of community-acquired pneumonia in adults. Thorax56(Suppl. IV), iv1–iv64 (2001).
  • Bogaert D, de Groot R, Hermans PWM. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis.4, 144–154 (2004).
  • Musher DM. Streptococcus pneumoniae. In: Principles and Practice of Infectious Disease. Mandell GL, Bennett JE, Dolin R (Eds.). Churchill Livingstone, PA, USA, 2392–2411 (2004).
  • Talbot TR, Hartert TV, Mitchel E et al. Asthma as a risk factor for invasive pneumococcal disease. N. Engl. J. Med.352, 2082–2090 (2005).
  • Parsons HK, Dockrell DH. The burden of invasive pneumococcal disease and the potential for reduction by immunisation. Int. J. Antimicrob. Agents19, 85–93 (2002).
  • Grant CC, Harnden AR, Jewell G, Knox K, Peto TE, Crook DW. Invasive pneumococcal disease in Oxford, 1985–2001: a retrospective case series. Arch. Dis. Child.88, 712–714 (2003).
  • Cooke GC, Hill AVS. Genetics of susceptibility to human infectious disease. Nat. Rev. Genet.2, 967–977 (2001).
  • Weatherall DJ, Clegg JB. Genetic variability in response to infection: malaria and after. Genes Immun.3, 331–337 (2002).
  • Sorensen TIA, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on premature death in adult adoptees. N. Engl. J. Med.318, 727–732 (1988).
  • Gingles NA, Alexander JE, Kadioglu A et al. Role of genetic resistance in invasive pneumococcal infection: identification and study of susceptibility and resistance in inbred mouse strains. Infect. Immun.69(1), 426–434 (2001).
  • Kerr AR, Irvine JJ, Search JJ et al. Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection. Infect. Immun.70(3), 1547–1557 (2002).
  • Brouwer MC, de Gans J, Heckenberg SG, Zwinderman AH, van der Poll T, van de Beek D. Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect. Dis.9(1), 31–44 (2009).
  • Picard C, Puel A, Bustamante J, Ku C-L, Casanova J-L. Primary immunodeficiencies associated with pneumococcal disease. Curr. Opin. Allergy Clin. Immunol.3, 451–459 (2003).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4, 499–511 (2004).
  • Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol.21, 335–376 (2003).
  • Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol.163(1), 1–5 (1999).
  • Schroder NW, Morath S, Alexander C et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem.278, 15587–15594 (2003).
  • Mogensen TH, Paludan SR, Kilian M, Ostergaard L. Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitides activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J. Leukocyte Biol.80, 1–11 (2006).
  • Letiembre M, Echchannaoui H, Bachmann P et al. Toll-like receptor 2 deficiency delays pneumococcal phagocytosis and impairs oxidative killing by granulocytes. Infect. Immun.73, 8397–8401 (2005).
  • Malley R, Henneke P, Morse SC et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl Acad. Sci.USA100(4), 1966–1971 (2003).
  • Spellerberg B, Rosenow C, Sha W, Tuomanen EI. Pneumococcal cell wall activates NF-κB in human monocytes: aspects distinct from endotoxin. Microb. Pathog.20, 309–317 (1996).
  • Schmeck B, Zahlten J, Moog K et al.Streptococcus pneumoniae-induced p38 MAPK-dependent phosphorylation of RelA at the interleuin-8 promoter. J. Biol. Chem.279(51), 53241–53247 (2004).
  • Amory-Rivier CF, Mohler J, Bedos JP et al. Nuclear factor-κB activation in mouse lung lavage cells in response to Streptococcus pneumoniae pulmonary infection. Crit. Care Med.28(9), 3249–3256 (2000).
  • Jones MR, Simms BT, Lupa MM, Kogan MS, Mizgerd JP. Lung NF-κB activation and neutrophils recruitment require IL-1 and TNF receptor signaling during pneumococcal pneumonia. J. Immunol.175, 7530–7535 (2005).
  • Quinton LJ, Jones MR, Simms BT et al. Functions and regulation of NF-κB RelA during pneumococcal pneumonia. J. Immunol.178, 1896–1903 (2007).
  • von Bernuth H, Picard C, Jin Z et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science321(5889), 691–696 (2008).
  • Zonana J, Elder ME, Schneider LC et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-g (NEMO). Am. J. Hum. Genet.67, 1555–1562 (2000).
  • Mansour S, Woffendin H, Mitton S et al. Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am. J. Med. Genet.99, 172–177 (2001).
  • Doffinger R, Smahi A, Bessia C et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet.27, 277–285 (2001).
  • Picard C, Puel A, Bonnet M et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science299, 2076–2079 (2003).
  • Courtois G, Smahi A, Reichenbach J et al. A hypermorphic IkBa mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest.112, 1108–1115 (2003).
  • Janssen R, van Wengen A, Hoeve MA et al. The same IkBa mutation in two related individuals leads to completely different clinical syndromes. J. Exp. Med.200, 559–568 (2004).
  • Puel A, Picard C, Ku CL, Smahi A, Casanova JL. Inherited disorders of NF-κB-mediated immunity in man. Curr. Opin. Immunol.16, 34–41 (2004).
  • Medvedev AE, Lentschat A, Kuhns DB et al. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J. Exp. Med.198, 521–531 (2003).
  • Chapman SJ, Khor CC, Vannberg FO et al. IkB genetic polymorphisms and invasive pneumococcal disease. Am. J. Respir. Crit. Care Med.176, 181–187 (2007).
  • Chapman SJ, Khor CC, Vannberg FO et al.NFKBIZ polymorphisms and susceptibility to pneumococcal disease in European and African populations. Genes Immun.11(4), 319–325 (2010).
  • Abraham E. Alterations in cell signaling in sepsis. Clin. Infect. Dis.41, S459–S464 (2005).
  • Koedel U, Bayerlein I, Paul R, Sporer B, Pfister HW. Pharmacological interference with NF-κB activation attenuates central nervous system complications in experimental pneumococcal meningitis. J. Infect. Dis.182, 1437–1445 (2000).
  • Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J. Clin. Invest.107(1), 7–11 (2001).
  • Karin M, Yamamoto Y, Wang QM. The IKK NF-κB system: a treasure trove for drug development. Nat. Rev. Drug Discov.3, 17–26 (2003).
  • Yamamoto M, Sato S, Hemmi H et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature420, 324–329 (2002).
  • Khor CC, Chapman SJ, Vannberg FO et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat. Genet.39(4), 523–528 (2007).
  • Ferwerda B, Alonso S, Banahan K et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proc. Natl Acad. Sci. USA106(25), 10272–10277 (2009).
  • Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature415, 673–679 (2002).
  • Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet365(9453), 63–78 (2005).
  • Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature377, 435–438 (1995).
  • Eisen DP, Minchinton RM. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin. Infect. Dis.37, 1496–1505 (2003).
  • Mullighan CG, Heatley S, Doherty K et al. Mannose-binding lectin gene polymorphisms are associated with major infection following allogeneic hemopoietic stem cell transplantation. Blood99, 3524–3529 (2002).
  • Kilpatrick DC. Mannan-binding lectin: clinical significance and applications. Biochim. Biophys. Acta1572, 401–413 (2002).
  • Summerfield JA, Sumiya M, Levin M et al. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series. Br. Med. J.314, 1229–1232 (1997).
  • Roy S, Knox K, Segal S et al. MBL genotype and risk of invasive pneumococcal disease: a case–control study. Lancet359, 1569–1573 (2002).
  • Kronborg G, Garred P. Mannose-binding lectin genotype as a risk factor for invasive pneumococcal infection. Lancet360, 1176 (2002).
  • Hibberd ML, Sumiya M, Summerfield JA et al. Association of variants of the gene for mannose-binding lectin with susceptibility to meningococcal disease. Lancet353, 1049–1053 (1999).
  • Koch A, Melbye M, Sorensen P et al. Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. JAMA285, 1316–1321 (2001).
  • Garred P, Strom JJ, Quist L et al. Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. J. Infect. Dis.188, 1394–1403 (2003).
  • Peterslund NA, Koch C, Jensenius JC et al. Association between deficiency of mannose-binding lectin and severe infections after chemotherapy. Lancet358, 636–638 (2001).
  • Neth O, Hann I, Turner MW et al. Deficiency of mannose-binding lectin and burden of infection in children with malignancy: a prospective study. Lancet358, 614–618 (2001).
  • Garcia-Laorden MI, Sole-Violan J, Rodriguez de Castro F et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J. Allergy Clin. Immunol.122(2), 368–374 (2008).
  • Endeman H, Herpers BL, de Jong BA et al. Mannose-binding lectin genotypes in susceptibility to community acquired pneumonia. Chest134(6), 1135–1140 (2008).
  • Rantala A, Lajunen T, Juvonen R et al. Mannose-binding lectin concentrations, MBL2 polymorphisms, and susceptibility to respiratory tract infections in young men. J. Infect. Dis.198(8), 1247–1253 (2008).
  • Eisen DP, Dean MM, Boermeester MA et al. Low serum mannose-binding lectin level increases the risk of death due to pneumococcal infection. Clin. Infect. Dis.47(4), 510–516 (2008).
  • Stengaard-Pedersen K, Thiel S, Gadjeva M et al. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N. Engl. J. Med.349, 554–560 (2003).
  • Bottini N, Musumeci L, Alonso A et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet.36, 337–338 (2004).
  • Gregersen PK, Lee HS, Batliwalla F, Begovich AB. PTPN22: setting thresholds for autoimmunity. Sem. Immunol.18, 214–223 (2006).
  • Begovich AB, Carlton VE, Honigberg LA et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet.75, 330–337 (2004).
  • Kyogoku C, Langefeld CD, Ortmann WA et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet.75, 504–507 (2004).
  • Carlton VEH, Hu X, Chokkalingam AP et al.PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am. J. Hum. Genet.77, 567–581 (2005).
  • Smyth D, Cooper JD, Collins JE et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes53, 3020–3023 (2004).
  • Velaga MR, Wilson V, Jennings CE et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J. Clin. End. Met.89, 5862–5865 (2004).
  • Canton I, Akhtar S, Gavalas NG et al. A single-nucleotide polymorphism in the gene encoding lymphoid protein tyrosine phosphatase (PTPN22) confers susceptibility to generalised vitiligo. Genes Immun.6, 584–587 (2005).
  • Michou L, Lasbleiz S, Rat AC et al. Linkage proof for PTPN22, a rheumatoid arthritis susceptibility gene and a human autoimmunity gene. Proc. Natl Acad. Sci. USA104, 1649–1654 (2007).
  • Siminovitch KA. PTPN22 and autoimmune disease. Nat. Genet.36, 1248–1249 (2004).
  • Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007).
  • Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Sem. Immunol.18, 207–213 (2006).
  • Gregersen PK. Gaining insight into PTPN22 and autoimmunity. Nat. Genet.37, 1300–1302 (2005).
  • Vang T, Congia M, Macis MD et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet.37, 1317–1319 (2005).
  • Arechiga AF, Habib T, He Y et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J. Immunol.182(6), 3343–3347 (2009).
  • Chapman SJ, Khor CC, Vannberg FO et al.PTPN22 and invasive bacterial disease. Nat. Genet.38(5), 499–500 (2006).
  • Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat. Rev. Genet.11(1), 17–30 (2010).
  • McCarthy MI, Abecasis GR, Cardon LR et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet.9(5), 356–369 (2008).
  • Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet.40(6), 695–701 (2008).
  • Casanova JL, Abel L. Primary immunodeficiencies: a field in its infancy. Science317(5838), 617–619 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.