343
Views
41
CrossRef citations to date
0
Altmetric
Review

Immunomodulatory therapy for sepsis: an update

, &
Pages 1013-1033 | Published online: 10 Jan 2014

References

  • Dellinger RP, Levy MM, Carlet JM et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med.36(1), 296–327 (2008).
  • van der Poll T, Opal SM. Host–pathogen interactions in sepsis. Lancet Infect. Dis.8(1), 32–43 (2008).
  • Opal SM. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int. J. Med. Microbiol.297(5), 365–377 (2007).
  • Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol.17(1), 1–14 (2005).
  • Cinel I, Opal SM. Molecular biology of inflammation and sepsis: a primer. Crit. Care Med.37(1), 291–304 (2009).
  • Gibot S. Clinical review: role of triggering receptor expressed on myeloid cells-1 during sepsis. Crit. Care9(5), 485–489 (2005).
  • Senftleben U, Karin M. The IKK/NF-κB pathway. Crit. Care Med.30(1 Suppl.), S18–S26 (2002).
  • Casey LC. Immunologic response to infection and its role in septic shock. Crit. Care Clin.16(2), 193–213 (2000).
  • Adib-Conquy M, Adrie C, Fitting C, Gattolliat O, Beyaert R, Cavaillon JM. Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit. Care Med.34(9), 2377–2385 (2006).
  • Wesche DE, Lomas-Neira JL, Perl M, Chung CS, Ayala A. Leukocyte apoptosis and its significance in sepsis and shock. J. Leukoc. Biol.78(2), 325–337 (2005).
  • Frazier WJ, Hall MW. Immunoparalysis and adverse outcomes from critical illness. Pediatr. Clin. North Am.55(3), 647–668, xi (2008).
  • Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N. Engl. J. Med.348(2), 138–150 (2003).
  • Cavaillon JM, Adib-Conquy M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit. Care10(5), 233 (2006).
  • Osuchowski MF, Welch K, Yang H, Siddiqui J, Remick DG. Chronic sepsis mortality characterized by an individualized inflammatory response. J. Immunol.179(1), 623–630 (2007).
  • Opal SM, Palardy JE, Chen WH, Parejo NA, Bhattacharjee AK, Cross AS. Active immunization with a detoxified endotoxin vaccine protects against lethal polymicrobial sepsis: its use with CpG adjuvant and potential mechanisms. J. Infect. Dis.192(12), 2074–2080 (2005).
  • Cross AS, Opal SM, Palardy JE et al. Phase I study of detoxified Escherichia coli J5 lipopolysaccharide (J5dLPS)/group B meningococcal outer membrane protein (OMP) complex vaccine in human subjects. Vaccine21(31), 4576–4587 (2003).
  • Ebrahimi F, Malo MS, Alam SN et al. Local peritoneal irrigation with intestinal alkaline phosphatase is protective against peritonitis in mice. J. Gastrointest. Surg.15(5), 860–869 (2011).
  • Su F, Brands R, Wang Z et al. Beneficial effects of alkaline phosphatase in septic shock. Crit. Care Med.34(8), 2182–2187 (2006).
  • van Veen SQ, van Vliet AK, Wulferink M, Brands R, Boermeester MA, van Gulik TM. Bovine intestinal alkaline phosphatase attenuates the inflammatory response in secondary peritonitis in mice. Infect. Immun.73(7), 4309–4314 (2005).
  • Heemskerk S, Masereeuw R, Moesker O et al. Alkaline phosphatase treatment improves renal function in severe sepsis or septic shock patients. Crit. Care Med.37(2), 417–423, e1 (2009).
  • Elsbach P. The bactericidal/permeability-increasing protein (BPI) in antibacterial host defense. J. Leukoc. Biol.64(1), 14–18 (1998).
  • Zhang LT, Yao YM, Lu JQ, Yan XJ, Yu Y, Sheng ZY. Recombinant bactericidal/permeability-increasing protein inhibits endotoxin-induced high-mobility group box 1 protein gene expression in sepsis. Shock29(2), 278–284 (2008).
  • Levin M, Quint PA, Goldstein B et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet356(9234), 961–967 (2000).
  • Giroir BP, Scannon PJ, Levin M. Bactericidal/permeability-increasing protein – lessons learned from the Phase III, randomized, clinical trial of rBPI21 for adjunctive treatment of children with severe meningococcemia. Crit. Care Med.29(7 Suppl.), S130–S135 (2001).
  • Zimecki M, Artym J, Chodaczek G, Kocieba M, Kruzel ML. Protective effects of lactoferrin in Escherichia coli-induced bacteremia in mice: relationship to reduced serum TNF α level and increased turnover of neutrophils. Inflamm. Res.53(7), 292–296 (2004).
  • Kruzel ML, Actor JK, Radak Z, Bacsi A, Saavedra-Molina A, Boldogh I. Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model. Innate Immun.16(2), 67–79 (2010).
  • Manzoni P, Rinaldi M, Cattani S et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA302(13), 1421–1428 (2009).
  • Davies B, Cohen J. Endotoxin removal devices for the treatment of sepsis and septic shock. Lancet Infect. Dis.11(1), 65–71 (2011).
  • Vincent JL, Laterre PF, Cohen J et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock23(5), 400–405 (2005).
  • Cruz DN, Antonelli M, Fumagalli R et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA301(23), 2445–2452 (2009).
  • Rachoin JS, Foster D, Dellinger RP. Endotoxin removal: how far from the evidence? From EUPHAS to EUPHRATES. Contrib. Nephrol.167, 111–118 (2010).
  • Martin EL, Cruz DN, Monti G et al. Endotoxin removal: how far from the evidence? The EUPHAS 2 Project. Contrib. Nephrol.167, 119–125 (2010).
  • Reinhart K, Meier-Hellmann A, Beale R et al. Open randomized Phase II trial of an extracorporeal endotoxin adsorber in suspected Gram-negative sepsis. Crit. Care Med.32(8), 1662–1668 (2004).
  • Taniguchi T, Hirai F, Takemoto Y et al. A novel adsorbent of circulating bacterial toxins and cytokines: the effect of direct hemoperfusion with CTR column for the treatment of experimental endotoxemia. Crit. Care Med.34(3), 800–806 (2006).
  • Rimmele T, Assadi A, Cattenoz M et al. High-volume haemofiltration with a new haemofiltration membrane having enhanced adsorption properties in septic pigs. Nephrol. Dial. Transplant.24(2), 421–427 (2009).
  • Bengsch S, Boos KS, Nagel D, Seidel D, Inthorn D. Extracorporeal plasma treatment for the removal of endotoxin in patients with sepsis: clinical results of a pilot study. Shock23(6), 494–500 (2005).
  • Lynn M, Rossignol DP, Wheeler JL et al. Blocking of responses to endotoxin by E5564 in healthy volunteers with experimental endotoxemia. J. Infect. Dis.187(4), 631–639 (2003).
  • Tidswell M, Tillis W, Larosa SP et al. Phase 2 trial of eritoran tetrasodium (E5564), a Toll-like receptor 4 antagonist, in patients with severe sepsis. Crit. Care Med.38(1), 72–83 (2010).
  • Rice TW, Wheeler AP, Bernard GR et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med.38(8), 1685–1694 (2010).
  • Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science229(4716), 869–871 (1985).
  • Abraham E, Laterre PF, Garbino J et al. Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter Phase III trial with 1,342 patients. Crit. Care Med.29(3), 503–510 (2001).
  • Panacek EA, Marshall JC, Albertson TE et al. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab’)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit. Care Med.32(11), 2173–2182 (2004).
  • Rice TW, Wheeler AP, Morris PE et al. Safety and efficacy of affinity-purified, anti-tumor necrosis factor-α, ovine fab for injection (CytoFab) in severe sepsis. Crit. Care Med.34(9), 2271–2281 (2006).
  • Fisher CJ Jr, Dhainaut JF, Opal SM et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA271(23), 1836–1843 (1994).
  • Opal SM, Fisher CJ Jr, Dhainaut JF et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a Phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit. Care Med.25(7), 1115–1124 (1997).
  • Barnay-Verdier S, Fattoum L, Borde C, Kaveri S, Gibot S, Marechal V. Emergence of autoantibodies to HMGB1 is associated with survival in patients with septic shock. Intensive Care Med.37(6), 957–962 (2011).
  • Li J, Kokkola R, Tabibzadeh S et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol. Med.9(1–2), 37–45 (2003).
  • Yang H, Ochani M, Li J et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl Acad. Sci. USA101(1), 296–301 (2004).
  • Cristofaro PA, Opal SM, Palardy JE et al. WAY-202196, a selective estrogen receptor-β agonist, protects against death in experimental septic shock. Crit. Care Med.34(8), 2188–2193 (2006).
  • Oh YJ, Youn JH, Min HJ et al. CKD712, (S)-1-(α-naphthylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, inhibits the lipopolysaccharide-stimulated secretion of HMGB1 by inhibiting PI3K and classical protein kinase C. Int. Immunopharmacol.11(9), 1160–1165 (2011).
  • Wang HL, Zhang WH, Lei WF, Zhou CQ, Ye T. The inhibitory effect of lidocaine on the release of high mobility group box 1 in lipopolysaccharide-stimulated macrophages. Anesth. Analg.112(4), 839–844 (2011).
  • Chen G, Li J, Qiang X et al. Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. J. Lipid Res.46(4), 623–627 (2005).
  • Chavakis T, Bierhaus A, Al-Fakhri N et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J. Exp. Med.198(10), 1507–1515 (2003).
  • Calfee CS, Ware LB, Eisner MD et al. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax63(12), 1083–1089 (2008).
  • Bopp C, Hofer S, Weitz J et al. sRAGE is elevated in septic patients and associated with patients outcome. J. Surg. Res.147(1), 79–83 (2008).
  • Christaki E, Opal SM, Keith JC Jr et al. A monoclonal antibody against RAGE alters gene expression and is protective in experimental models of sepsis and pneumococcal pneumonia. Shock35(5), 492–498 (2011).
  • Lutterloh EC, Opal SM, Pittman DD et al. Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit. Care11(6), R122 (2007).
  • Honore PM, Joannes-Boyau O, Gressens B. Blood and plasma treatments: the rationale of high-volume hemofiltration. Contrib. Nephrol.156, 387–395 (2007).
  • Rimmele T, Wey PF, Bernard N et al. Hemofiltration with the Cascade system in an experimental porcine model of septic shock. Ther. Apher. Dial.13(1), 63–70 (2009).
  • Morgera S, Haase M, Kuss T et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit. Care Med.34(8), 2099–2104 (2006).
  • Ronco C, Brendolan A, Lonnemann G et al. A pilot study of coupled plasma filtration with adsorption in septic shock. Crit. Care Med.30(6), 1250–1255 (2002).
  • Bellomo R, Tetta C, Ronco C. Coupled plasma filtration adsorption. Intensive Care Med.29(8), 1222–1228 (2003).
  • Peng ZY, Carter MJ, Kellum JA. Effects of hemoadsorption on cytokine removal and short-term survival in septic rats. Crit. Care Med.36(5), 1573–1577 (2008).
  • Issa N, Messer J, Paganini EP. Renal assist device and treatment of sepsis-induced acute kidney injury in intensive care units. Contrib. Nephrol.156, 419–427 (2007).
  • Humes HD, Weitzel WF, Bartlett RH et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int.66(4), 1578–1588 (2004).
  • Tumlin J, Wali R, Williams W et al. Efficacy and safety of renal tubule cell therapy for acute renal failure. J. Am. Soc. Nephrol.19(5), 1034–1040 (2008).
  • Opal SM, Lim YP, Siryaporn E et al. Longitudinal studies of inter-α inhibitor proteins in severely septic patients: a potential clinical marker and mediator of severe sepsis. Crit. Care Med.35(2), 387–392 (2007).
  • Lin HY. [Clinical trial with a new immunomodulatory strategy: treatment of severe sepsis with Ulinastatin and Maipuxin]. Zhonghua Yi Xue Za Zhi87(7), 451–457 (2007).
  • Zhang Y, Chen H, Li YM et al. Thymosin α1- and ulinastatin-based immunomodulatory strategy for sepsis arising from intra-abdominal infection due to carbapenem-resistant bacteria. J. Infect. Dis.198(5), 723–730 (2008).
  • Chen H, He MY, Li YM. Treatment of patients with severe sepsis using ulinastatin and thymosin α1: a prospective, randomized, controlled pilot study. Chin. Med. J. (Engl.),122(8), 883–888 (2009).
  • Garantziotis S, Hollingsworth JW, Ghanayem RB et al. Inter-α-trypsin inhibitor attenuates complement activation and complement-induced lung injury. J. Immunol.179(6), 4187–4192 (2007).
  • Thiel M, Caldwell CC, Sitkovsky MV. The critical role of adenosine A2A receptors in downregulation of inflammation and immunity in the pathogenesis of infectious diseases. Microbes Infect.5(6), 515–526 (2003).
  • Vuaden FC, Savio LE, Bastos CM, Bogo MR, Bonan CD. Adenosine A(2A) receptor agonist (CGS-21680) prevents endotoxin-induced effects on nucleotidase activities in mouse lymphocytes. Eur. J. Pharmacol.651(1–3), 212–217 (2011).
  • Moore CC, Martin EN, Lee GH, Obrig T, Linden J, Scheld WM. An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models. BMC Infect. Dis.8, 141 (2008).
  • Chung CS, Chen Y, Grutkoski PS, Doughty L, Ayala A. SOCS-1 is a central mediator of steroid-increased thymocyte apoptosis and decreased survival following sepsis. Apoptosis12(7), 1143–1153 (2007).
  • Watanabe H, Kubo M, Numata K et al. Overexpression of suppressor of cytokine signaling-5 in T cells augments innate immunity during septic peritonitis. J. Immunol.177(12), 8650–8657 (2006).
  • Qin H, Roberts KL, Niyongere SA, Cong Y, Elson CO, Benveniste EN. Molecular mechanism of lipopolysaccharide-induced SOCS-3 gene expression in macrophages and microglia. J. Immunol.179(9), 5966–5976 (2007).
  • Saturnino SF, Prado RO, Cunha-Melo JR, Andrade MV. Endotoxin tolerance and cross-tolerance in mast cells involves TLR4, TLR2 and FcεR1 interactions and SOCS expression: perspectives on immunomodulation in infectious and allergic diseases. BMC Infect. Dis.10, 240 (2010).
  • Reddy RC, Narala VR, Keshamouni VG, Milam JE, Newstead MW, Standiford TJ. Sepsis-induced inhibition of neutrophil chemotaxis is mediated by activation of peroxisome proliferator-activated receptor-{γ}. Blood112(10), 4250–4258 (2008).
  • Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C. Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J. Steroid Biochem. Mol. Biol.85(2–5), 267–273 (2003).
  • Liu D, Zeng BX, Zhang SH et al. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, reduces acute lung injury in endotoxemic rats. Crit. Care Med.33(10), 2309–2316 (2005).
  • Lee S, Kim W, Kang KP et al. Agonist of peroxisome proliferator-activated receptor-γ, rosiglitazone, reduces renal injury and dysfunction in a murine sepsis model. Nephrol. Dial. Transplant.20(6), 1057–1065 (2005).
  • Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J. Altern. Complement. Med.9(1), 161–168 (2003).
  • Siddiqui AM, Cui X, Wu R et al. The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-γ. Crit. Care Med.34(7), 1874–1882 (2006).
  • Chen HW, Kuo HT, Chai CY, Ou JL, Yang RC. Pretreatment of curcumin attenuates coagulopathy and renal injury in LPS-induced endotoxemia. J. Endotoxin Res.13(1), 15–23 (2007).
  • Memis D, Hekimoglu S, Sezer A, Altaner S, Sut N, Usta U. Curcumin attenuates the organ dysfunction caused by endotoxemia in the rat. Nutrition24(11–12), 1133–1138 (2008).
  • Tham CL, Lam KW, Rajajendram R et al. The effects of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone on proinflammatory signaling pathways and CLP-induced lethal sepsis in mice. Eur. J. Pharmacol.652(1–3), 136–144 (2011).
  • Borovikova LV, Ivanova S, Zhang M et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature405(6785), 458–462 (2000).
  • van Westerloo DJ, Giebelen IA, Meijers JC et al. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. J. Thromb. Haemost.4(9), 1997–2002 (2006).
  • Pavlov VA, Ochani M, Yang LH et al. Selective α7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit. Care Med.35(4), 1139–1144 (2007).
  • Wang H, Liao H, Ochani M et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med.10(11), 1216–1221 (2004).
  • Rosas-Ballina M, Goldstein RS, Gallowitsch-Puerta M et al. The selective α7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol. Med.15(7–8), 195–202 (2009).
  • Hofer S, Eisenbach C, Lukic IK et al. Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit. Care Med.36(2), 404–408 (2008).
  • Huston JM, Gallowitsch-Puerta M, Ochani M et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit. Care Med.35(12), 2762–2768 (2007).
  • Kreymann KG, de Heer G, Nierhaus A, Kluge S. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit. Care Med.35(12), 2677–2685 (2007).
  • Visvanathan K, Charles A, Bannan J, Pugach P, Kashfi K, Zabriskie JB. Inhibition of bacterial superantigens by peptides and antibodies. Infect. Immun.69(2), 875–884 (2001).
  • Miwa K, Fukuyama M, Matsuno N, Shimada K, Ikeda K, Ikeda T. Physiological response to superantigen-adsorbing hemoperfusion in toxin-concentration-controlled septic swine. Blood Purif.24(3), 319–326 (2006).
  • Steinberg J, Halter J, Schiller H et al. Chemically modified tetracycline prevents the development of septic shock and acute respiratory distress syndrome in a clinically applicable porcine model. Shock24(4), 348–356 (2005).
  • Maitra SR, Bhaduri S, Chen E, Shapiro MJ. Role of chemically modified tetracycline on TNF-α and mitogen-activated protein kinases in sepsis. Shock22(5), 478–481 (2004).
  • Tkalcevic VI, Bosnjak B, Pasalic I et al. The anti-inflammatory activity of clarithromycin inhibits TNFα production and prolongs survival following lipopolysaccharide administration in mice. Int. J. Antimicrob. Agents32(2), 195–196 (2008).
  • Ivetić Tkalcević V, Bosnjak B, Hrvacic B et al. Anti-inflammatory activity of azithromycin attenuates the effects of lipopolysaccharide administration in mice. Eur. J. Pharmacol.539(1–2), 131–138 (2006).
  • Leiva M, Ruiz-Bravo A, Moreno E, Jimenez-Valera M. The anti-inflammatory activity of telithromycin in a mouse model of septic shock. Int. J. Antimicrob. Agents29(3), 364–365 (2007).
  • Giamarellos-Bourboulis EJ, Pechere JC, Routsi C et al. Effect of clarithromycin in patients with sepsis and ventilator-associated pneumonia. Clin. Infect. Dis.46(8), 1157–1164 (2008).
  • Merx MW, Liehn EA, Graf J et al. Statin treatment after onset of sepsis in a murine model improves survival. Circulation112(1), 117–124 (2005).
  • Niessner A, Steiner S, Speidl WS et al. Simvastatin suppresses endotoxin-induced upregulation of Toll-like receptors 4 and 2 in vivo. Atherosclerosis189(2), 408–413 (2006).
  • Liappis AP, Kan VL, Rochester CG, Simon GL. The effect of statins on mortality in patients with bacteremia. Clin. Infect. Dis.33(8), 1352–1357 (2001).
  • Almog Y, Shefer A, Novack V et al. Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation110(7), 880–885 (2004).
  • Yende S, Milbrandt EB, Kellum JA et al. Understanding the potential role of statins in pneumonia and sepsis. Crit. Care Med.39(8), 1871–1878 (2011).
  • Terblanche MJ, Pinto R, Whiteley C, Brett S, Beale R, Adhikari NK. Statins do not prevent acute organ failure in ventilated ICU patients: single-centre retrospective cohort study. Crit. Care15(1), R74 (2011).
  • Novack V, Eisinger M, Frenkel A et al. The effects of statin therapy on inflammatory cytokines in patients with bacterial infections: a randomized double-blind placebo controlled clinical trial. Intensive Care Med.35(7), 1255–1260 (2009).
  • Kruger PS, Harward ML, Jones MA et al. Continuation of statin therapy in patients with presumed infection: a randomized controlled trial. Am. J. Respir. Crit. Care Med.183(6), 774–781 (2011).
  • Gressner OA, Koch A, Sanson E, Trautwein C, Tacke F. High C5a levels are associated with increased mortality in sepsis patients – no enhancing effect by actin-free Gc-globulin. Clin. Biochem.41(12), 974–980 (2008).
  • Czermak BJ, Sarma V, Pierson CL et al. Protective effects of C5a blockade in sepsis. Nat. Med.5(7), 788–792 (1999).
  • Laudes IJ, Chu JC, Sikranth S et al. Anti-c5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis. Am. J. Pathol.160(5), 1867–1875 (2002).
  • Zwijnenburg PJ, van der Poll T, Florquin S et al. C1 inhibitor treatment improves host defense in pneumococcal meningitis in rats and mice. J. Infect. Dis.196(1), 115–123 (2007).
  • Dorresteijn MJ, Visser T, Cox LA et al. C1-esterase inhibitor attenuates the inflammatory response during human endotoxemia. Crit. Care Med.38(11), 2139–2145 (2010).
  • Fein AM, Bernard GR, Criner GJ et al. Treatment of severe systemic inflammatory response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127). Results of a randomized, double-blind, placebo-controlled trial. CP-0127 SIRS and Sepsis Study Group. JAMA277(6), 482–487 (1997).
  • Abraham E, Reinhart K, Opal S et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA290(2), 238–247 (2003).
  • Wunderink RG, Laterre PF, Francois B et al. Recombinant tissue factor pathway inhibitor in severe community-acquired pneumonia: a randomized trial. Am. J. Respir. Crit. Care Med.183(11), 1561–1568 (2011).
  • Warren BL, Eid A, Singer P et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA286(15), 1869–1878 (2001).
  • Wiedermann CJ, Hoffmann JN, Juers M et al. High-dose antithrombin III in the treatment of severe sepsis in patients with a high risk of death: efficacy and safety. Crit. Care Med.34(2), 285–292 (2006).
  • Van de Wouwer M, Plaisance S, De Vriese A et al. The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J. Thromb. Haemost.4(8), 1813–1824 (2006).
  • Abeyama K, Stern DM, Ito Y et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J. Clin. Invest.115(5), 1267–1274 (2005).
  • Nagato M, Okamoto K, Abe Y, Higure A, Yamaguchi K. Recombinant human soluble thrombomodulin decreases the plasma high-mobility group box-1 protein levels, whereas improving the acute liver injury and survival rates in experimental endotoxemia. Crit. Care Med.37(7), 2181–2186 (2009).
  • Saito H, Maruyama I, Shimazaki S et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a Phase III, randomized, double-blind clinical trial. J. Thromb. Haemost.5(1), 31–41 (2007).
  • Yamakawa K, Fujimi S, Mohri T et al. Treatment effects of recombinant human soluble thrombomodulin in patients with severe sepsis: a historical control study. Crit. Care15(3), R123 (2011).
  • Iba T, Nakarai E, Takayama T, Nakajima K, Sasaoka T, Ohno Y. Combination effect of antithrombin and recombinant human soluble thrombomodulin in a lipopolysaccharide induced rat sepsis model. Crit. Care13(6), R203 (2009).
  • Moreno SE, Alves-Filho JC, Rios-Santos F et al. Signaling via platelet-activating factor receptors accounts for the impairment of neutrophil migration in polymicrobial sepsis. J. Immunol.177(2), 1264–1271 (2006).
  • Gomes RN, Bozza FA, Amancio RT et al. Exogenous platelet-activating factor acetylhydrolase reduces mortality in mice with systemic inflammatory response syndrome and sepsis. Shock26(1), 41–49 (2006).
  • Schuster DP, Metzler M, Opal S et al. Recombinant platelet-activating factor acetylhydrolase to prevent acute respiratory distress syndrome and mortality in severe sepsis: Phase IIb, multicenter, randomized, placebo-controlled, clinical trial. Crit. Care Med.31(6), 1612–1619 (2003).
  • Vincent JL, Spapen H, Bakker J, Webster NR, Curtis L. Phase II multicenter clinical study of the platelet-activating factor receptor antagonist BB-882 in the treatment of sepsis. Crit. Care Med.28(3), 638–642 (2000).
  • Albrecht DM, van Ackern K, Bender HJ et al. Efficacy and safety of the platelet-activating factor receptor antagonist BN 52021 (ginkgolide B) in patients with severe sepsis : a randomised, double-blind, placebo-controlled, multicentre trial. Clin. Drug Investig.24(3), 137–147 (2004).
  • Fink MP. Bench-to-bedside review: cytopathic hypoxia. Crit. Care6(6), 491–499 (2002).
  • Goldfarb RD, Marton A, Szabo E et al. Protective effect of a novel, potent inhibitor of poly(adenosine 5´-diphosphate-ribose) synthetase in a porcine model of severe bacterial sepsis. Crit. Care Med.30(5), 974–980 (2002).
  • Murakami K, Enkhbaatar P, Shimoda K et al. Inhibition of poly (ADP-ribose) polymerase attenuates acute lung injury in an ovine model of sepsis. Shock21(2), 126–133 (2004).
  • Duntas LH. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm. Metab. Res.41(6), 443–447 (2009).
  • Andrews PJ, Avenell A, Noble DW et al. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ342, d1542 (2011).
  • de Mello RO, Lunardelli A, Caberlon E et al. Effect of N-acetylcysteine and fructose-1,6-bisphosphate in the treatment of experimental sepsis. Inflammation DOI: 10.1007/s10753-010-9261-9 (2010) (Epub ahead of print).
  • Hsu BG, Lee RP, Yang FL, Harn HJ, Chen HI. Post-treatment with N-acetylcysteine ameliorates endotoxin shock-induced organ damage in conscious rats. Life Sci.79(21), 2010–2016 (2006).
  • Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol.6(11), 813–822 (2006).
  • Landelle C, Lepape A, Voirin N et al. Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med.36(11), 1859–1866 (2010).
  • Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA. The sepsis seesaw: tilting toward immunosuppression. Nat. Med.15(5), 496–497 (2009).
  • Kalil AC. A silent killer: cytomegalovirus infection in the nonimmunocompromised critically ill patient. Crit. Care Med.36(12), 3261–3264 (2008).
  • Ziemann M, Sedemund-Adib B, Reiland P, Schmucker P, Hennig H. Increased mortality in long-term intensive care patients with active cytomegalovirus infection. Crit. Care Med.36(12), 3145–3150 (2008).
  • Polk HC Jr, Cheadle WG, Livingston DH et al. A randomized prospective clinical trial to determine the efficacy of interferon-γ in severely injured patients. Am. J. Surg.163(2), 191–196 (1992).
  • Wasserman D, Ioannovich JD, Hinzmann RD, Deichsel G, Steinmann GG. Interferon-γ in the prevention of severe burn-related infections: a European Phase III multicenter trial. The Severe Burns Study Group. Crit. Care Med.26(3), 434–439 (1998).
  • Dries DJ, Jurkovich GJ, Maier RV et al. Effect of interferon γ on infection-related death in patients with severe injuries. A randomized, double-blind, placebo-controlled trial. Arch Surg.129(10), 1031–1041; discussion 1042 (1994).
  • Nelson S, Belknap SM, Carlson RW et al. A randomized controlled trial of filgrastim as an adjunct to antibiotics for treatment of hospitalized patients with community-acquired pneumonia. CAP Study Group. J. Infect. Dis.178(4), 1075–1080 (1998).
  • Weiss M, Gross-Weege W, Schneider M et al. Enhancement of neutrophil function by in vivo filgrastim treatment for prophylaxis of sepsis in surgical intensive care patients. J. Crit. Care10(1), 21–26 (1995).
  • Nelson S, Heyder AM, Stone J et al. A randomized controlled trial of filgrastim for the treatment of hospitalized patients with multilobar pneumonia. J. Infect. Dis.182(3), 970–973 (2000).
  • Root RK, Lodato RF, Patrick W et al. Multicenter, double-blind, placebo-controlled study of the use of filgrastim in patients hospitalized with pneumonia and severe sepsis. Crit. Care Med.31(2), 367–373 (2003).
  • Meisel C, Schefold JC, Pschowski R et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am. J. Respir. Crit. Care Med.180(7), 640–648 (2009).
  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol.26, 677–704 (2008).
  • Guignant C, Lepape A, Huang X et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care15(2), R99 (2011).
  • Huang X, Venet F, Wang YL et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl Acad. Sci. USA106(15), 6303–6308 (2009).
  • Inoue S, Bo L, Bian J, Unsinger J, Chang K, Hotchkiss RS. Dose-dependent effect of anti-CTLA-4 on survival in sepsis. Shock36(1), 38–44 (2011).
  • Inoue S, Unsinger J, Davis CG et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J. Immunol.184(3), 1401–1409 (2010).
  • Unsinger J, McGlynn M, Kasten KR et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J. Immunol.184(7), 3768–3779 (2010).
  • Steinhauser ML, Hogaboam CM, Kunkel SL, Lukacs NW, Strieter RM, Standiford TJ. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J. Immunol.162(1), 392–399 (1999).
  • Reddy RC, Chen GH, Newstead MW et al. Alveolar macrophage deactivation in murine septic peritonitis: role of interleukin 10. Infect. Immun.69(3), 1394–1401 (2001).
  • Muenzer JT, Davis CG, Chang K et al. Characterization and modulation of the immunosuppressive phase of sepsis. Infect. Immun.78(4), 1582–1592 (2010).
  • Hotchkiss RS, Chang KC, Swanson PE et al. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat. Immunol.1(6), 496–501 (2000).
  • Chung CS, Song GY, Lomas J, Simms HH, Chaudry IH, Ayala A. Inhibition of Fas/Fas ligand signaling improves septic survival: differential effects on macrophage apoptotic and functional capacity. J. Leukoc. Biol.74(3), 344–351 (2003).
  • Galban C, Montejo JC, Mesejo A et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit. Care Med.28(3), 643–648 (2000).
  • Bower RH, Cerra FB, Bershadsky B et al. Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit. Care Med.23(3), 436–449 (1995).
  • Kudsk KA, Minard G, Croce MA et al. A randomized trial of isonitrogenous enteral diets after severe trauma. An immune-enhancing diet reduces septic complications. Ann. Surg.224(4), 531–540; discussion 540–533 (1996).
  • Houdijk AP, Rijnsburger ER, Jansen J et al. Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet352(9130), 772–776 (1998).
  • Esmon CT. Why do animal models (sometimes) fail to mimic human sepsis? Crit. Care Med.32(5 Suppl.), S219–S222 (2004).
  • Dyson A, Singer M. Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? Crit. Care Med.37(1 Suppl.), S30–S37 (2009).
  • Opal SM, Cross AS. The use of immunocompromised animals as models for human septic shock. Shock24(Suppl. 1), 64–70 (2005).
  • Standiford TJ, Strieter RM, Lukacs NW, Kunkel SL. Neutralization of IL-10 increases lethality in endotoxemia. Cooperative effects of macrophage inflammatory protein-2 and tumor necrosis factor. J. Immunol.155(4), 2222–2229 (1995).
  • Opal SM. Concept of PIRO as a new conceptual framework to understand sepsis. Pediatr Crit Care Med.6(3 Suppl.), S55–S60 (2005).
  • Volk HD, Reinke P, Docke WD. Clinical aspects: from systemic inflammation to ‘immunoparalysis’. Chem. Immunol.74, 162–177 (2000).
  • Kox WJ, Bone RC, Krausch D et al. Interferon γ-1b in the treatment of compensatory anti-inflammatory response syndrome. A new approach: proof of principle. Arch. Intern. Med.157(4), 389–393 (1997).
  • van der Poll T, van Deventer SJ. Cytokines and anticytokines in the pathogenesis of sepsis. Infect. Dis. Clin. North Am.13(2), 413–426, ix (1999).
  • Reddy RC, Chen GH, Tekchandani PK, Standiford TJ. Sepsis-induced immunosuppression: from bad to worse. Immunol. Res.24(3), 273–287 (2001).
  • Anas AA, Wiersinga WJ, de Vos AF, van der Poll T. Recent insights into the pathogenesis of bacterial sepsis. Neth. J. Med.68(4), 147–152 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.