712
Views
43
CrossRef citations to date
0
Altmetric
Perspective

Screening strategies for discovery of antibacterial natural products

, &
Pages 589-613 | Published online: 10 Jan 2014

References

  • Walsh CT, Antibiotics: Actions, Origin, Resistance. ASM Press, Washington, DC, USA (2003).
  • Singh SB, Barrett JF. Empirical antibacterial drug discovery-foundation in natural products. Biochem. Pharmacol.71, 1006–1015 (2006).
  • National nosocomial infections surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infection Control.32(8), 470–485 (2004).
  • Talbot GH, Bradley J, Edwards JE Jr et al. Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of america. Clin. Infect. Dis.42(5), 657–668 (2006).
  • Spellberg B, Guidos R, Gilbert D et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis.46(2), 155–164 (2008).
  • Spellberg B, Blaser M, Guidos RJ et al. Combating antimicrobial resistance: policy recommendations to save lives. Clin. Infect. Dis.52(Suppl. 5) S397–S428 (2011).
  • Klevens RM, Morrison MA, Nadle J et al. Invasive methicillin-resistant Staphylococcus aureus infections in the united states. J. Am. Med. Assoc.298(15), 1763–1771 (2007).
  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov.6(1), 29–40 (2007).
  • Leipe DD, Aravind L, Koonin EV. Did DNA replication evolve twice independently? Nucleic Acids Res.27(17), 3389–3401 (1999).
  • Pomerantz RT, O’Donnell M. Replisome mechanics: insights into a twin DNA polymerase machine. Trends Microbiol.15(4), 156–164 (2007).
  • Bruck I, O’Donnell M. The DNA replication machine of a Gram-positive organism. J. Biol. Chem.275(37), 28971–28983 (2000).
  • Mott ML, Berger JM. DNA replication initiation: mechanisms and regulation in bacteria. Nat. Rev. Microbiol.5(5), 343–354 (2007).
  • Darst SA. Bacterial RNA polymerase. Curr. Opin. Struct. Biol.11(2), 155–162 (2001).
  • Browning DF, Busby SJ. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol.2(1), 57–65 (2004).
  • Borukhov S, Nudler E. RNA polymerase: the vehicle of transcription. Trends Microbiol.16(3), 126–134 (2008).
  • Akerley BJ, Rubin EJ, Novick VL et al. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl Acad. Sci. USA99(2), 966–971 (2002).
  • Hutchinson CA III, Peterson SN, Gill SR et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science286(5447), 2165–2169 (1999).
  • Ji Y, Zhang B, Van SF et al. Identification of critical Staphylococcal genes using conditional phenotypes generated by antisense RNA. Science293(5538), 2266–2269 (2001).
  • Kobayashi K, Ehrlich SD, Albertini A et al. Essential Bacillus subtilis genes. Proc. Natl Acad. Sci. USA100(8), 4678–4683 (2003).
  • Forsyth RA, Haselbeck RJ, Ohlsen KL et al. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol.431387–1400 (2002).
  • DeVito JA, Mills JA, Liu VG et al. An array of target-specific screening strains for antibacterial discovery. Nat. Biotechnol.20(5), 478–483 (2002).
  • Tashjian TF, Butler MM, Bowlin TL. Bacterial DnaA initiator protein: a novel target for developing new antibiotics. Presented at: 51st Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 17–20 September 2010.
  • Mesak LR, Qi S, Villanueva I, Miao V, Davies J. Staphylococcus aureus promoter-lux reporters for drug discovery. J. Antibiot. (Tokyo)63(8), 492–498 (2010).
  • Ince D, Hooper DC. Quinolone resistance due to reduced target enzyme expression. J. Bacteriol.185(23), 6883–6892 (2003).
  • Haste NM, Perera VR, Maloney KN et al. Activity of the streptogramin antibiotic etamycin against methicillin-resistant Staphylococcus aureus. J. Antibiot. (Tokyo)63(5), 219–224 (2010).
  • Li W, Leet JE, Ax HA et al. Nocathiacins, new thiazolyl peptide antibiotics from nocardia sp. I. Taxonomy, fermentation and biological activities. J. Antibiot. (Tokyo)56(3), 226–231 (2003).
  • Baltz RH. Antimicrobials from actinomycetes: back to the future. Microbe2(3), 125–131 (2007).
  • Gadebusch HH, Stapley EO, Zimmerman SB. The discovery of cell wall active antibacterial antibiotics. Crit. Rev. Biotechnol.12(3), 225–243 (1992).
  • Silver LL. Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem. Pharmacol.71(7), 996–1005 (2006).
  • Lederberg J. Bacterial protoplasts induced by penicillin. Proc. Natl Acad. Sci. USA42(9), 574–577 (1956).
  • Donadio S, Carrano L, Brandi L et al. Targets and assays for discovering novel antibacterial agents. J. Biotechnol.99(3), 175–185 (2002).
  • Schneider T, Sahl HG. An oldie but a goodie – cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol.300(2–3), 161–169 (2010).
  • Onishi HR, Pelak BA, Gerckens LS et al. Antibacterial agents that inhibit lipid a biosynthesis. Science274(5289), 980–982 (1996).
  • Billot-Klein D, Gutmann L, Collatz E, Heijenoort J. Analysis of peptidoglycan precursors in vancomycin-resistant Enterococci. Antimicrob. Agents Chemother.36(7), 1487–1490 (1992).
  • Somner EA, Reynolds PE. Inhibition of peptidoglycan biosynthesis by ramoplanin. Antimicrob. Agents Chemother.34(3), 413–419 (1990).
  • Ge M, Chen Z, Onishi HR et al. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-ala-D-ala. Science284(5413), 507–511 (1999).
  • Guan Z, Breazeale SD, Raetz CR. Extraction and identification by mass spectrometry of undecaprenyl diphosphate-murNAC-pentapeptide-glcNAC from Escherichia coli. Anal. Biochem.345(2), 336–339 (2005).
  • Young K, Silver LL. Leakage of periplasmic enzymes from envA1 strains of Escherichia coli. J. Bacteriol.173(12), 3609–3614 (1991).
  • Poole K. Multidrug resistance in Gram-negative bacteria. Curr. Opin. Microbiol.4(5), 500–508 (2001).
  • Markham PN, Neyfakh AA. Efflux-mediated drug resistance in Gram-positive bacteria. Curr. Opin. Microbiol.4(5), 509–514 (2001).
  • Young K, Jayasuriya H, Ondeyka JG et al. Discovery of FabH/FabF inhibitors from natural products. Antimicrob. Agents Chemother.50(2), 519–526 (2006).
  • Sugie Y, Inagaki S, Kato Y et al. CJ-21,058, a new secA inhibitor isolated from a fungus. J. Antibiot. (Tokyo)55(1), 25–29 (2002).
  • Wang J, Galgoci A, Kodali S et al. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J. Biol. Chem.278(45), 44424–44428 (2003).
  • Wong KK, Kuo DW, Chabin RM et al. Engineering a cell-free murein biosynthetic pathway:  Combinatorial enzymology in drug discovery. J. Am. Chem. Soc.120(51), 13527–13528 (1998).
  • El Zoeiby A, Sanschagrin F, Havugimana PC, Garnier A, Levesque RC. In vitro reconstruction of the biosynthetic pathway of peptidoglycan cytoplasmic precursor in Pseudomonas aeruginosa. FEMS Microbiol. Lett.201(2), 229–235 (2001).
  • Baum EZ, Montenegro DA, Licata L et al. Identification and characterization of new inhibitors of the Escherichia coli murA enzyme. Antimicrob. Agents Chemother.45(11), 3182–3188 (2001).
  • Eschenburg S, Priestman MA, Abdul-Latif FA et al. A novel inhibitor that suspends the induced fit mechanism of UDP-n-acetylglucosamine enolpyruvyl transferase (murA). J. Biol. Chem.280(14), 14070–14075 (2005).
  • Francisco GD, Li Z, Albright JD et al. Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis. Bioorg. Med. Chem. Lett.14(1), 235–238 (2004).
  • Yang Y, Severin A, Chopra R et al. 3,5-dioxopyrazolidines, novel inhibitors of UDP-n- acetylenolpyruvylglucosamine reductase (murB) with activity against Gram-positive bacteria. Antimicrob. Agents Chemother.50(2), 556–564 (2006).
  • Kutterer KM, Davis JM, Singh G et al. 4-Alkyl and 4,4’-dialkyl 1,2-bis(4-chlorophenyl)pyrazolidine-3,5-dione derivatives as new inhibitors of bacterial cell wall biosynthesis. Bioorg. Med. Chem. Lett.15(10), 2527–2531 (2005).
  • Antane S, Caufield CE, Hu W et al. Pulvinones as bacterial cell wall biosynthesis inhibitors. Bioorg. Med. Chem. Lett.16(1), 176–180 (2006).
  • Andres CJ, Bronson JJ, D’Andrea SV et al. 4-Thiazolidinones: novel inhibitors of the bacterial enzyme murB. Bioorg. Med. Chem. Lett.10(8), 715–717 (2000).
  • Bronson JJ, DenBleyker KL, Falk PJ et al. Discovery of the first antibacterial small molecule inhibitors of murB. Bioorg. Med. Chem. Lett.13(5), 873–875 (2003).
  • Ehmann DE, Demeritt JE, Hull K, GFisher SL. Biochemical characterization of an inhibitor of Escherichia coli UDP-n-acetylmuramyl-L-alanine ligase. Biochim. Biophys. Acta.1698(2), 167–174 (2004).
  • Zawadzke LE, Norcia M, Desbonnet CR et al. Identification of an inhibitor of the murC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway. Assay Drug Dev. Technol.6(1), 95–103 (2008).
  • Kotnik M, Humljan J, Contreras-Martel C et al. Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of murD ligase. J. Mol. Biol.370(1), 107–115 (2007).
  • Baum EZ, Crespo-Carbone SM, Klinger A et al. A murF inhibitor that disrupts cell wall biosynthesis in Escherichia coli. Antimicrob. Agents Chemother.51(12), 4420–4426 (2007).
  • Brandish PE, Burnham MK, Lonsdale JT et al. Slow binding inhibition of phospho-n-acetylmuramyl-pentapeptide-translocase (Escherichia coli) by mureidomycin A. J. Biol. Chem.271(13), 7609–7614 (1996).
  • Stachyra T, Dini C, Ferrari P et al. Fluorescence detection-based functional assay for high-throughput screening for mraY. Antimicrob. Agents Chemother.48(3), 897–902 (2004).
  • Zawadzke LE, Wu P, Cook L et al. Targeting the mraY and murG bacterial enzymes for antimicrobial therapeutic intervention. Anal. Biochem.314(2), 243–252 (2003).
  • Ravishankar S, Kumar VP, Chandrakala B et al. Scintillation proximity assay for inhibitors of Escherichia coli murG and, optionally, mraY. Antimicrob. Agents Chemother.49(4), 1410–1418 (2005).
  • Murakami R, Fujita Y, Kizuka M et al. A-102395, a new inhibitor of bacterial translocase I, produced by Amycolatopsis sp. Sank 60206. J. Antibiot. (Tokyo)60(11), 690–695 (2007).
  • Murakami R, Fujita Y, Kizuka M et al. A-94964, A novel inhibitor of bacterial translocase I, produced by Streptomyces sp. Sank 60404. I. Taxonomy, isolation and biological activity. J. Antibiot. (Tokyo)61(9), 537–544 (2008).
  • Murakami R, Muramatsu Y, Minami E et al. A novel assay of bacterial peptidoglycan synthesis for natural product screening. J. Antibiot. (Tokyo)62(3), 153–158 (2009).
  • Wallace J, Di M, Schweizer HP, Bowlin T, LMoir DT. New cellular gain-of-signal bioluminescent reporter screens for inhibitors of the fatty acid biosynthetic pathway in pseudomonas aeruginosa. Presented at: 50th Interscience Conference on Antimicrobial Agents and Chemotherapy. Boston, MA, USA, 12–15 September 2010 (Poster F2-863).
  • Quillardet P, Huisman O, D’Ari R, Hofnung M. SOS chromotest, a direct assay of induction of an sos function in Escherichia coli K-12 to measure genotoxicity. Proc. Natl Acad. Sci. USA79(19), 5971–5975 (1982).
  • Michel B. After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol.3(7), e255 (2005).
  • Mamber SW, Okasinski WG, Pinter CD, Tunac JB. The Escherichia coli K-12 SOS chromotest agar spot test for simple, rapid detection of genotoxic agents. Mutat. Res.171(2–3), 83–90 (1986).
  • Hawkey PM. Mechanisms of quinolone action and microbial response. J. Antimicrob. Chemother.51(Suppl.), 129–135 (2003).
  • Majtanova L, Majtan V. Quinolone effects in the SOS chromotest and the synthesis of biomacromolecules. Folia. Microbiol. (Praha).41(3), 233–236 (1996).
  • Gonzalez del Val A, Platas G, Arenal F et al. Novel illudins from Coprinopsis episcopalis (syn. Coprinus episcopalis), and the distribution of illudin-like compounds among filamentous fungi. Mycol. Res.107(Pt 10), 1201–1209 (2003).
  • Ptitsyn LR, Horneck G, Komova O et al. A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl. Environ. Microbiol.63(11), 4377–4384 (1997).
  • Kodali S, Galgoci A, Young K et al. Determination of selectivity and efficacy of fatty acid synthesis inhibitors. J. Biol. Chem.280(2), 1669–1677 (2005).
  • Sun D, Cohen S, Mani N, Murphy C, Rothstein DM. A pathway-specific cell based screening system to detect bacterial cell wall inhibitors. J. Antibiot. (Tokyo)55(3), 279–287 (2002).
  • Uehara T, Park JT. Role of the murein precursor UDP-N-acetylmuramyl-L-ala-γ-D-glu-meso-diaminopimelic acid-D-ala-D-ala in repression of β-lactamase induction in cell division mutants. J. Bacteriol.184(15), 4233–4239 (2002).
  • DeCenzo M, Kuranda M, Cohen S et al. Identification of compounds that inhibit late steps of peptidoglycan synthesis in bacteria. J. Antibiot. (Tokyo).55(3), 288–295 (2002).
  • Mani N, Sancheti P, Jiang ZD et al. Screening systems for detecting inhibitors of cell wall transglycosylation in Enterococcus. Cell wall transglycosylation inhibitors in Enterococcus. J. Antibiot. (Tokyo)51(5), 471–479 (1998).
  • Burkard M, Stein T. Microtiter plate bioassay to monitor the interference of antibiotics with the lipid II cycle essential for peptidoglycan biosynthesis. J. Microbiol. Methods75(1), 70–74 (2008).
  • Hutter B, Fischer C, Jacobi A, Schaab CL, oferer H. Panel of Bacillus subtilis reporter strains indicative of various modes of action. Antimicrob. Agents Chemother.48(7), 2588–2594 (2004).
  • Zhang C, Occi J, Masurekar P et al. Isolation, structure, and antibacterial activity of philipimycin, a thiazolyl peptide discovered from Actinoplanes philippinensis MA7347. J. Am. Chem. Soc.130(36), 12102–12110 (2008).
  • Allen GC Jr, Kornberg A. Fine balance in the regulation of dnaB helicase by dnaC protein in replication in Escherichia coli. J. Biol. Chem.266(33), 22096–22101 (1991).
  • Kaguni JM. DnaA: controlling the initiation of bacterial DNA replication and more. Annu. Rev. Microbiol.60, 351–375 (2006).
  • Studier FW, Moffatt BA. Use of bacteriophage t7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol.189(1), 113–130 (1986).
  • Studier FW. Use of bacteriophage t7 lysozyme to improve an inducible t7 expression system. J. Mol. Biol.219(1), 37–44 (1991).
  • Fossum S, De Pascale G, Weigel C et al. A robust screen for novel antibiotics: specific knockout of the initiator of bacterial DNA replication. FEMS Microbiol. Lett.281(2), 210–214 (2008).
  • Uchida K, Furukohri A, Shinozaki Y et al. Overproduction of Escherichia coli DNA polymerase dinB (pol iv) inhibits replication fork progression and is lethal. Mol. Microbiol.70(3), 608–622 (2008).
  • Hammond GG, Cassidy PJ, Overbye KM. Novobiocin-dependent topA deletion mutants of Escherichia coli. J. Bacteriol.173(17), 5564–5567 (1991).
  • Ji Y, Marra A, Rosenberg M, Woodnutt G. Regulated antisense RNA eliminates α-toxin virulence in Staphylococcus aureus infection. J. Bacteriol.181(21), 6585–6590 (1999).
  • Singh SB, Phillips JW, Wang J. Highly sensitive target based whole cell antibacterial discovery strategy by antisense RNA silencing. Curr. Opin. Drug Disc. Dev.10, 160–166 (2007).
  • Donald RG, Skwish S, Forsyth RA et al. A Staphylococcus aureus Fitness Test platform for mechanism-based profiling of antibacterial compounds. Chem. Biol.16(8), 826–836 (2009).
  • Goetz MA, Zhang C, Zink DL et al. Coelomycin, a highly substituted 2,6-dioxo-pyrazine fungal metabolite antibacterial agent discovered by Staphylococcus aureus Fitness Test profiling. J. Antibiot. (Tokyo).63(8), 512–518 (2010).
  • Huber J, Donald RG, Lee SH et al. Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Chem. Biol.16(8), 837–848 (2009).
  • Finn RD, Tate J, Mistry J et al. The pfam protein families database. Nucleic Acids Research.36(Suppl. 1), D281–D288 (2008).
  • Inoue A, Murata Y, Takahashi H et al. Involvement of an essential gene, mviN, in murein synthesis in Escherichia coli. J. Bacteriol.190(21), 7298–7301 (2008).
  • Ruiz N. Bioinformatics identification of murJ. (mviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl Acad. Sci. USA105(40), 15553–15557 (2008).
  • Ruiz N. Streptococcus pyogenes ytgP (spy_0390) complements Escherichia coli strains depleted of the putative peptidoglycan flippase murj. Antimicrob. Agents Chemother.53(8), 3604–3605 (2009).
  • Kulanthaivel P, Kreuzman AJ, Strege MA et al. Novel lipoglycopeptides as inhibitors of bacterial signal peptidase I. J. Biol. Chem.279(35), 36250–36258 (2004).
  • Paetzel M, Goodall JJ, Kania M, Dalbey RE, Page MG. Crystallographic and biophysical analysis of a bacterial signal peptidase in complex with a lipopeptide-based inhibitor. J. Biol. Chem.279(29), 30781–30790 (2004).
  • Mansour TS, Caufield CE, Rasmussen B et al. Naphthyl tetronic acids as multi-target inhibitors of bacterial peptidoglycan biosynthesis. ChemMedChem2(10), 1414–1417 (2007).
  • McDonald LA, Barbieri LR, Carter GT et al. Structures of the muraymycins, novel peptidoglycan biosynthesis inhibitors. J. Am. Chem. Soc.124(35), 10260–10261 (2002).
  • Fujita Y, Murakami R, Muramatsu Y, Miyakoshi S, Takatsu T. A-94964, novel inhibitor of bacterial translocase I, produced by Streptomyces sp. Sank 60404. II. Physico-chemical properties and structure elucidation. J. Antibiot. (Tokyo)61(9), 545–549 (2008).
  • Brinster S, Lamberet G, Staels B et al. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature458(7234), 83–86 (2009).
  • Wang J, Soisson SM, Young K et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature441, 358–361 (2006).
  • Rapp C, Jung G, Isselhorst-Schart C, Zahner H. A new member of the class of antibiotics with thiotetromic acid structure isolated from Streptomyces olivaceus Tü3010. Liebigs Ann. Chem.1043–1047 (1988).
  • Ondeyka JG, Zink DL, Young K et al. Discovery of bacterial fatty acid synthase inhibitors from a Phoma species as antimicrobial agents using a new antisense based strategy. J. Nat. Prod.69, 377–380 (2006).
  • Singh SB, Jayasuriya H, Ondeyka JG et al. Isolation, structure, and absolute stereochemistry of platensimycin, a broad spectrum antibiotic discovered using an antisense differential sensitivity strategy. J. Am. Chem. Soc.128(36), 11916–11920 (2006).
  • Wang J, Kodali S, Lee SH et al. Platencin is a dual FabF and FabH inhibitor with potent in vivo antibiotic properties. Proc. Natl Acad. Sci. USA104, 7612–7616 (2007).
  • Jayasuriya H, Herath KB, Zhang C et al. Isolation and structure of platencin: a novel FabH and FabF dual inhibitor with potent broad spectrum antibiotic activity produced by Streptomyces platensis MA7339. Angew. Chem. Int. Ed. Engl.46, 4684–4688 (2007).
  • Singh MP, Kong F, Janso J. E et al. Novel α-pyrones produced by a marine Pseudomonas sp. F92s91: taxonomy and biological activities. J. Antibiot. (Tokyo)56(12), 1033–1044 (2003).
  • Kong F, Singh MP, Carter GT. Pseudopyronines A and B, α-pyrones produced by a marine Pseudomonas sp. F92s91, and evidence for the conversion of 4-hydroxy-α-pyrone to 3-furanone. J. Nat. Prod.68(6), 920–923 (2005).
  • Constantine KL, Mueller L, Huang S et al. Conformation and absolute configuration of nocathiacin I determined by NMR spectroscopy and chiral capillary electrophoresis. J. Am. Chem. Soc.124(25), 7284–7285 (2002).
  • Singh SB, Occi J, Jayasuriya H et al. Antibacterial evaluations of thiazomycin – a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa. J. Antibiot. (Tokyo)60(9), 565–571 (2007).
  • Jayasuriya H, Herath K, Ondeyka JG et al. Isolation and structure elucidation of thiazomycin – a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa. J. Antibiot. (Tokyo)60(9), 554–564 (2007).
  • Poehlsgaard J, Douthwaite S. The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol.3, 870–881 (2005).
  • Ramakrishnan V. Ribosome structure and the mechanism of translation. Cell108(4), 557–572 (2002).
  • Culver GM. Assembly of the 30s ribosomal subunit. Biopolymers68, 234–249 (2003).
  • Ogle JM, Carter AP, Ramakrishnan V. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem. Sci.28(5), 259–266 (2003).
  • Grundy FJ, Henkin TM. The rpsd gene, encoding ribosomal protein s4, is autogenously regulated in Bacillus subtilis. J. Bacteriol.173(15), 4595–4602 (1991).
  • Singh SB, Zink DL, Huber J et al. Discovery of lucensimycins A and B from Streptomyces lucensis MA7349 using an antisense strategy. Org. Lett.8(24), 5449–5452 (2006).
  • Singh SB, Zink DL, Herath KB, Salazar O, Genilloud O. Discovery and antibacterial activity of lucensimycin C from Streptomyces lucensis. Tetrahedron Lett.49(16), 2616–2619 (2008).
  • Singh SB, Zink DL, Dorso K et al. Isolation, structure, and antibacterial activities of lucensimycins D-G, discovered from Streptomyces lucensis MA7349 using an antisense strategy. J. Nat. Prod.72, 345–352 (2008).
  • Zhang C, Ondeyka JG, Zink DL et al. Isolation, structure and antibacterial activity of phaeosphenone from a Phaeosphaeria sp. Discovered by antisense strategy. J. Nat. Prod.71, 1304–1307 (2008).
  • Ondeyka JG, Zink D, Basilio A et al. Coniothyrione, a chlorocyclopentandienylbenzopyrone as a bacterial protein synthesis inhibitor discovered by antisense technology. J. Nat. Prod.70(4), 668–670 (2007).
  • Zhang C, Ondeyka JG, Zink DL et al. Isolation, structure and antibacterial activity of pleosporone from a Pleosporalean ascomycete discovered by using antisense strategy. Bioorg. Med. Chem.17(6), 2162–2166 (2009).
  • Jayasuriya H, Zink D, Basilio A et al. Discovery and antibacterial activity of glabramycin A-C from Neosartorya glabra by an antisense strategy. J. Antibiot. (Tokyo)62(5), 265–269 (2009).
  • Zhang C, Ondeyka JG, Zink DL et al. Discovery of okilactomycin and congeners from Streptomyces scabrisporus by antisense differential sensitivity assay targeting ribosomal protein s4. J. Antibiot. (Tokyo)62(2), 55–61 (2009).
  • Riedlinger J, Reicke A, Zahner H et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J. Antibiot. (Tokyo)57(4), 271–279 (2004).
  • Bister B, Bischoff D, Strobele M et al. Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew. Chem. Int. Ed. Engl.43(19), 2574–2576 (2004).
  • Goetschi E, Angehrn P, Gmuender H et al. Cyclothialidine and its congeners: a new class of DNA gyrase inhibitors. Pharmacol. Ther.60(2), 367–380 (1993).
  • Nakada N, Shimada H, Hirata T et al. Biological characterization of cyclothialidine, a new DNA gyrase inhibitor. Antimicrob. Agents Chemother.37(12), 2656–2661 (1993).
  • Mariani R, Granata G, Maffioli SI et al. Antibiotics GE23077, novel inhibitors of bacterial RNA polymerase. Part 3: chemical derivatization. Bioorg. Med. Chem. Lett.15(16), 3748–3752 (2005).
  • Ciciliato I, Corti E, Sarubbi E et al. Antibiotics GE23077, novel inhibitors of bacterial RNA polymerase. I. Taxonomy, isolation and characterization. J. Antibiot. (Tokyo)57(3), 210–217 (2004).
  • Sarubbi E, Monti F, Corti E, Miele A, Selva E. Mode of action of the microbial metabolite GE23077, a novel potent and selective inhibitor of bacterial RNA polymerase. Eur. J. Biochem.271(15), 3146–3154 (2004).
  • Villain-Guillot P, Bastide L, Gualtieri M, Leonetti JP. Progress in targeting bacterial transcription. Drug Discov. Today12(5–6), 200–208 (2007).
  • Theriault RJ, Karwowski JP, Jackson M et al. Tiacumicins, a novel complex of 18-membered macrolide antibiotics. I. Taxonomy, fermentation and antibacterial activity. J. Antibiot. (Tokyo)40(5), 567–574 (1987).
  • Gerber M, Ackermann G. Opt-80, a macrocyclic antimicrobial agent for the treatment of Clostridium difficile infections: a review. Expert Opin. Investig. Drugs17(4), 547–553 (2008).
  • Parenti F, Pagani H, Beretta G. Lipiarmycin, a new antibiotic from Actinoplanes. I. Description of the producer strain and fermentation studies. J. Antibiot. (Tokyo)28(4), 247–252 (1975).
  • Talpaert M, Campagnari F, Clerici L. Lipiarmycin: an antibiotic inhibiting nucleic acid polymerases. Biochem. Biophys. Res. Commun.63(1), 328–334 (1975).
  • Kurabachew M, Lu SH, Krastel P et al. Lipiarmycin targets RNA polymerase and has good activity against multidrug-resistant strains of Mycobacterium tuberculosis. J. Antimicrob. Chemother.62(4), 713–719 (2008).
  • Gualtieri M, Villain-Guillot P, Latouche J, Leonetti JP, Bastide L. Mutation in the Bacillus subtilis RNA polymerase β’ subunit confers resistance to lipiarmycin. Antimicrob. Agents Chemother.50(1), 401–402 (2006).
  • Irschik H, Gerth K, Hofle G, Kohl W, Reichenbach H. The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (myxobacterales). J. Antibiot. (Tokyo)36(12), 1651–1658 (1983).
  • Mukhopadhyay J, Das K, Ismail S et al. The RNA polymerase “switch region” is a target for inhibitors. Cell135(2), 295–307 (2008).
  • Chu M, Mierzwa R, He L et al. Isolation and structure elucidation of two novel deformylase inhibitors produced by Streptomyces sp. Tetrahedron Lett.42(21), 3549–3551 (2001).
  • Koyama N, Nagahiro T, Yamaguchi Y et al. Stemphones, novel potentiators of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Aspergillus sp. FKI-2136. J. Antibiot. (Tokyo)58(11), 695–703 (2005).
  • Fukumoto A, Kim YP, Hanaki H et al. Cyslabdan, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Streptomyces sp. K04–0144. II. Biological activities. J. Antibiot. (Tokyo)61(1), 7–10 (2008).
  • Fukumoto A, Kim YP, Matsumoto A et al. Cyslabdan, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Streptomyces sp. K04–0144. I. Taxonomy, fermentation, isolation and structural elucidation. J. Antibiot. (Tokyo)61(1), 1–6 (2008).
  • Yamazaki H, Omura S, Tomoda H, Xanthoradone C, a new potentiator of imipenem activity against methicillin-resistant Staphylococcus aureus, produced by Penicillium radicum FKI-3765–3762. J. Antibiot. (Tokyo)63(6), 329–330 (2010).
  • Hughes CC, Prieto-Davo A, Jensen PR, Fenical W. The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org. Lett.10(4), 629–631 (2008).
  • Parish CA, de la Cruz M, Smith SK et al. Antisense-guided isolation and structure elucidation of pannomycin, a substituted cis-decalin from Geomyces pannorum. J. Nat. Prod.72(1), 59–62 (2009).
  • Parish CA, Huber J, Baxter J et al. A new ene-triyne antibiotic from the fungus Baeospora myosura. J. Nat. Prod.67(11), 1900–1902 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.