461
Views
48
CrossRef citations to date
0
Altmetric
Review

Bloodstream infections caused by carbapenemase-producing Klebsiella pneumoniae: a clinical perspective

, , &
Pages 1393-1404 | Published online: 10 Jan 2014

References

  • Carpenter JL. Klebsiella pulmonary infections: occurrence at one medical center and review. Rev. Infect. Dis. 12(4), 672–682 (1990).
  • Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 91(3B), 72S–75S (1991).
  • Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11(4), 589–603 (1998).
  • Martin CM, Ikari NS, Zimmerman J, Waitz JA. A virulent nosocomial Klebsiella with a transferable R factor for gentamicin: emergence and suppression. J. Infect. Dis. 124, S24–S29 (1971).
  • Perez F, Endimiani A, Hujer KM, Bonomo RA. The continuing challenge of ESBLs. Curr. Opin. Pharmacol. 7(5), 459–469 (2007).
  • Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother. 46(1), 1–11 (2002).
  • Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev. 18(4), 657–686 (2005).
  • Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med. 18(5), 263–272 (2012).
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18(2), 306–325 (2005).
  • Ke W, Bethel CR, Thomson JM, Bonomo RA, van den Akker F. Crystal structure of KPC-2: insights into carbapenemase activity in class A β-lactamases. Biochemistry 46(19), 5732–5740 (2007).
  • Miriagou V, Cornaglia G, Edelstein M et al. Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin. Microbiol. Infect. 16(2), 112–122 (2010).
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 20th informational supplement (June 2010 update). CLSI document M100-S20-U. Clinical and Laboratory Standards Institute, PA, USA (2010).
  • Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the β-lactamase bla KPC gene. Antimicrob. Agents Chemother. 52(4), 1257–1263 (2008).
  • Bradford PA, Bratu S, Urban C et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin. Infect. Dis. 39(1), 55–60 (2004).
  • Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 9(4), 228–236 (2009).
  • Wernli D, Haustein T, Conly J, Carmeli Y, Kickbusch I, Harbarth S. A call for action: the application of The International Health Regulations to the global threat of antimicrobial resistance. PLoS Med. 8(4), e1001022 (2011).
  • Maltezou HC, Giakkoupi P, Maragos A et al. Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J. Infect. 58(3), 213–219 (2009).
  • Giakkoupi P, Papagiannitsis CC, Miriagou V et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009–10). J. Antimicrob. Chemother. 66(7), 1510–1513 (2011).
  • Giani T, D’Andrea MM, Pecile P et al. Emergence in Italy of Klebsiella pneumoniae sequence type 258 producing KPC-3 Carbapenemase. J. Clin. Microbiol. 47(11), 3793–3794 (2009).
  • Baraniak A, Izdebski R, Herda M et al. Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Poland. Antimicrob. Agents Chemother. 53(10), 4565–4567 (2009).
  • Wei ZQ, Du XX, Yu YS, Shen P, Chen YG, Li LJ. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob. Agents Chemother. 51(2), 763–765 (2007).
  • Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem. Pharmacol. 74(12), 1686–1701 (2007).
  • Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect. Dis. 11(5), 381–393 (2011).
  • Psichogiou M, Tassios PT, Avlamis A et al. Ongoing epidemic of blaVIM-1-positive Klebsiella pneumoniae in Athens, Greece: a prospective survey. J. Antimicrob. Chemother. 61(1), 59–63 (2008).
  • Kumarasamy KK, Toleman MA, Walsh TR et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10(9), 597–602 (2010).
  • Nordmann P, Poirel L, Toleman MA, Walsh TR. Does broad-spectrum beta-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J. Antimicrob. Chemother. 66(4), 689–692 (2011).
  • Docquier JD, Calderone V, De Luca F et al. Crystal structure of the OXA-48 β-lactamase reveals mechanistic diversity among class D carbapenemases. Chem. Biol. 16(5), 540–547 (2009).
  • Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48(1), 15–22 (2004).
  • Carrër A, Poirel L, Yilmaz M et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob. Agents Chemother. 54(3), 1369–1373 (2010).
  • Carrër A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob. Agents Chemother. 52(8), 2950–2954 (2008).
  • Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin. Infect. Dis. 53(1), 60–67 (2011).
  • Saidel-Odes L, Polachek H, Peled N et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect. Control Hosp. Epidemiol. 33(1), 14–19 (2012).
  • Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, Schwartz D, Leavitt A, Carmeli Y. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob. Agents Chemother. 52(3), 1028–1033 (2008).
  • Akova M, Daikos GL, Tzouvelekis L, Carmeli Y. Interventional strategies and current clinical experience with carbapenemase-producing Gram-negative bacteria. Clin. Microbiol. Infect. 18(5), 439–448 (2012).
  • Daikos GL, Vryonis E, Psichogiou M et al. Risk factors for bloodstream infection with Klebsiella pneumoniae producing VIM-1 metallo-β-lactamase. J. Antimicrob. Chemother. 65(4), 784–788 (2010).
  • Patel N, Harrington S, Dihmess A et al. Clinical epidemiology of carbapenem-intermediate or -resistant Enterobacteriaceae. J. Antimicrob. Chemother. 66(7), 1600–1608 (2011).
  • Ben-David D, Masarwa S, Navon-Venezia S et al.; Israel PACF CRKP (Post-Acute-Care Facility Carbapenem-Resistant Klebsiella pneumoniae) Working Group. Carbapenem-resistant Klebsiella pneumoniae in post-acute-care facilities in Israel. Infect. Control Hosp. Epidemiol. 32(9), 845–853 (2011).
  • Borer A, Saidel-Odes L, Eskira S et al. Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K. pneumoniae. Am. J. Infect. Control 40(5), 421–425 (2012).
  • Schechner V, Kotlovsky T, Kazma M et al. Carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected? Clin. Microbiol. Infect. doi:10.1111/j.1469-0691.2012.03888.x (2012) (Epub ahead of print).
  • Kassis-Chikhani N, Saliba F, Carbonne A et al. Extended measures for controlling an outbreak of VIM-1 producing imipenem-resistant Klebsiella pneumoniae in a liver transplant centre in France, 2003–2004. Euro Surveill. 15(46), 19713 (2010).
  • Patel G, Perez F, Bonomo RA. Carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii: assessing their impact on organ transplantation. Curr. Opin. Organ Transplant. 15(6), 676–682 (2010).
  • Livermore DM, Andrews JM, Hawkey PM et al. Are susceptibility tests enough, or should laboratories still seek ESBLs and carbapenemases directly? J. Antimicrob. Chemother. 67(7), 1569–1577 (2012).
  • Daikos GL, Petrikkos P, Psichogiou M et al. Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob. Agents Chemother. 53(5), 1868–1873 (2009).
  • Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin. Microbiol. Infect. 17(8), 1135–1141 (2011).
  • Li C, Kuti JL, Nightingale CH, Nicolau DP. Population pharmacokinetic analysis and dosing regimen optimization of meropenem in adult patients. J. Clin. Pharmacol. 46(10), 1171–1178 (2006).
  • Bulik CC, Christensen H, Li P, Sutherland CA, Nicolau DP, Kuti JL. Comparison of the activity of a human simulated, high-dose, prolonged infusion of meropenem against Klebsiella pneumoniae producing the KPC carbapenemase versus that against Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob. Agents Chemother. 54(2), 804–810 (2010).
  • Daikos GL, Panagiotakopoulou A, Tzelepi E, Loli A, Tzouvelekis LS, Miriagou V. Activity of imipenem against VIM-1 metallo-β-lactamase-producing Klebsiella pneumoniae in the murine thigh infection model. Clin. Microbiol. Infect. 13(2), 202–205 (2007).
  • Bulik CC, Nicolau DP. In vivo efficacy of simulated human dosing regimens of prolonged-infusion doripenem against carbapenemase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 54(10), 4112–4115 (2010).
  • Berçot B, Poirel L, Nordmann P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn. Microbiol. Infect. Dis. 71(4), 442–445 (2011).
  • Livermore DM, Warner M, Mushtaq S, Doumith M, Zhang J, Woodford N. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents 37(5), 415–419 (2011).
  • Bratu S, Tolaney P, Karumudi U et al. Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J. Antimicrob. Chemother. 56(1), 128–132 (2005).
  • Elemam A, Rahimian J, Doymaz M. In vitro evaluation of antibiotic synergy for polymyxin B-resistant carbapenemase-producing Klebsiella pneumoniae. J. Clin. Microbiol. 48(10), 3558–3562 (2010).
  • Pournaras S, Vrioni G, Neou E et al. Activity of tigecycline alone and in combination with colistin and meropenem against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains by time-kill assay. Int. J. Antimicrob. Agents 37(3), 244–247 (2011).
  • Nilsson AI, Berg OG, Aspevall O, Kahlmeter G, Andersson DI. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob. Agents Chemother. 47(9), 2850–2858 (2003).
  • Souli M, Galani I, Boukovalas S et al. In vitro interactions of antimicrobial combinations with fosfomycin against KPC-2-producing Klebsiella pneumoniae and protection of resistance development. Antimicrob. Agents Chemother. 55(5), 2395–2397 (2011).
  • Mouloudi E, Protonotariou E, Zagorianou A et al. Bloodstream infections caused by metallo-β-lactamase/Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect. Control Hosp. Epidemiol. 31(12), 1250–1256 (2010).
  • Zarkotou O, Pournaras S, Tselioti P et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin. Microbiol. Infect. 17(12), 1798–1803 (2011).
  • Ben-David D, Kordevani R, Keller N et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin. Microbiol. Infect. 18(1), 54–60 (2012).
  • Aschbacher R, Pagani L, Doumith M et al. Metallo-β-lactamases among Enterobacteriaceae from routine samples in an Italian tertiary-care hospital and long-term care facilities during 2008. Clin. Microbiol. Infect. 17(2), 181–189 (2011).
  • Babouee B, Widmer AF, Dubuis O et al. Emergence of four cases of KPC-2 and KPC-3-carrying Klebsiella pneumoniae introduced to Switzerland, 2009–10. Euro Surveill. 16(11), (2011).
  • Benenson S, Navon-Venezia S, Carmeli Y et al. Carbapenem-resistant Klebsiella pneumoniae endocarditis in a young adult. Successful treatment with gentamicin and colistin. Int. J. Infect. Dis. 13(5), e295–e298 (2009).
  • Bergamasco MD, Barroso Barbosa M, de Oliveira Garcia D et al. Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in solid organ transplantation. Transpl. Infect. Dis. 14(2), 198–205 (2012).
  • Cagnacci S, Gualco L, Roveta S et al. Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolysing VIM-1 metallo-β-lactamase: first Italian outbreak. J. Antimicrob. Chemother. 61(2), 296–300 (2008).
  • Coatsworth NR, Huntington PG, Hardiman RP, Hudson BJ, Fernandes CJ. A case of carbapenemase-producing Klebsiella pneumoniae in Australia. Pathology 44(1), 42–44 (2012).
  • Cobo J, Morosini MI, Pintado V et al. Use of tigecycline for the treatment of prolonged bacteremia due to a multiresistant VIM-1 and SHV-12 β-lactamase-producing Klebsiella pneumoniae epidemic clone. Diagn. Microbiol. Infect. Dis. 60(3), 319–322 (2008).
  • Daikos GL, Karabinis A, Paramythiotou E et al. VIM-1-producing Klebsiella pneumoniae bloodstream infections: analysis of 28 cases. Int. J. Antimicrob. Agents 29(4), 471–473 (2007).
  • Elemam A, Rahimian J, Mandell W. Infection with panresistant Klebsiella pneumoniae: a report of 2 cases and a brief review of the literature. Clin. Infect. Dis. 49(2), 271–274 (2009).
  • Endimiani A, Depasquale JM, Forero S et al. Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system. J. Antimicrob. Chemother. 64(5), 1102–1110 (2009).
  • Ho VP, Jenkins SG, Afaneh CI, Turbendian HK, Nicolau DP, Barie PS. Use of meropenem by continuous infusion to treat a patient with a Bla(kpc-2)-positive Klebsiella pneumoniae blood stream infection. Surg. Infect. (Larchmt) 12(4), 325–327 (2011).
  • Humphries RM, Kelesidis T, Dien Bard J, Ward KW, Bhattacharya D, Lewinski MA. Successful treatment of pan-resistant Klebsiella pneumoniae pneumonia and bacteraemia with a combination of high-dose tigecycline and colistin. J. Med. Microbiol. 59(Pt 11), 1383–1386 (2010).
  • Karabinis A, Paramythiotou E, Mylona-Petropoulou D et al. Colistin for Klebsiella pneumoniae-associated sepsis. Clin. Infect. Dis. 38(1), e7–e9 (2004).
  • Lee NY, Yan JJ, Lee HC, Liu KH, Huang ST, Ko WC. Clinical experiences of bacteremia caused by metallo-β-lactamase-producing gram-negative organisms. J. Microbiol. Immunol. Infect. 37(6), 343–349 (2004).
  • Marschall J, Tibbetts RJ, Dunne WM Jr, Frye JG, Fraser VJ, Warren DK. Presence of the KPC carbapenemase gene in Enterobacteriaceae causing bacteremia and its correlation with in vitro carbapenem susceptibility. J. Clin. Microbiol. 47(1), 239–241 (2009).
  • Mathers AJ, Cox HL, Bonatti H et al. Fatal cross infection by carbapenem-resistant Klebsiella in two liver transplant recipients. Transpl. Infect. Dis. 11(3), 257–265 (2009).
  • Nadkarni AS, Schliep T, Khan L, Zeana CB. Cluster of bloodstream infections caused by KPC-2 carbapenemase-producing Klebsiella pneumoniae in Manhattan. Am. J. Infect. Control 37(2), 121–126 (2009).
  • Qureshi ZA, Paterson DL, Potoski BA et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob. Agents Chemother. 56(4), 2108–2113 (2012).
  • Tumbarello M, Viale P, Viscoli C et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: Importance of Combination Therapy. Clin. Infect. Dis. 55(7), 943–950 (2012).
  • Sánchez-Romero I, Asensio A, Oteo J et al. Nosocomial outbreak of VIM-1-producing Klebsiella pneumoniae isolates of multilocus sequence type 15: molecular basis, clinical risk factors, and outcome. Antimicrob. Agents Chemother. 56(1), 420–427 (2012).
  • Souli M, Kontopidou FV, Papadomichelakis E, Galani I, Armaganidis A, Giamarellou H. Clinical experience of serious infections caused by Enterobacteriaceae producing VIM-1 metallo-β-lactamase in a Greek University Hospital. Clin. Infect. Dis. 46(6), 847–854 (2008).
  • Souli M, Galani I, Antoniadou A et al. An outbreak of infection due to β-Lactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: molecular characterization, epidemiology, and outcomes. Clin. Infect. Dis. 50(3), 364–373 (2010).
  • Steinmann J, Kaase M, Gatermann S et al. Outbreak due to a Klebsiella pneumoniae strain harbouring KPC-2 and VIM-1 in a German university hospital, July 2010 to January 2011. Euro Surveill. 16(33), 19914 (2011).
  • Villegas MV, Lolans K, Correa A et al.; Colombian Nosocomial Resistance Study Group. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of Klebsiella pneumoniae from South America. Antimicrob. Agents Chemother. 50(8), 2880–2882 (2006).
  • Yan JJ, Ko WC, Tsai SH, Wu HM, Wu JJ. Outbreak of infection with multidrug-resistant Klebsiella pneumoniae carrying bla(IMP-8) in a university medical center in Taiwan. J. Clin. Microbiol. 39(12), 4433–4439 (2001).
  • Kilic A, Aktas Z, Bedir O et al. Identification and characterization of OXA-48 producing, carbapenem-resistant Enterobacteriaceae isolates in Turkey. Ann. Clin. Lab. Sci. 41(2), 161–166 (2011).
  • Maherault AC, Nordmann P, Therby A, Pangon B. Efficacy of imipenem for the treatment of bacteremia due to an OXA-48-producing Klebsiella pneumoniae isolate. Clin. Infect. Dis. 54(4), 577–578 (2012).
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 19th informational supplement. CLSI document M100-S20. Clinical and Laboratory Standards Institute, PA, USA (2010).
  • Paul M, Soares-Weiser K, Leibovici L. Beta lactam monotherapy versus β lactam-aminoglycoside combination therapy for fever with neutropenia: systematic review and meta-analysis. BMJ 326(7399), 1111 (2003).
  • Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L. β-lactam monotherapy versus β-lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328(7441), 668 (2004).
  • Petrosillo N, Ioannidou E, Falagas ME. Colistin monotherapy vs. combination therapy: evidence from microbiological, animal and clinical studies. Clin. Microbiol. Infect. 14(9), 816–827 (2008).
  • Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J. Antimicrob. Chemother. 65(6), 1119–1125 (2010).
  • Garonzik SM, Li J, Thamlikitkul V et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob. Agents Chemother. 55(7), 3284–3294 (2011).
  • Plachouras D, Karvanen M, Friberg LE et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob. Agents Chemother. 53(8), 3430–3436 (2009).
  • Dudhani RV, Turnidge JD, Nation RL, Li J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J. Antimicrob. Chemother. 65(9), 1984–1990 (2010).
  • Daikos GL, Skiada A, Pavleas J et al. Serum bactericidal activity of three different dosing regimens of colistin with implications for optimum clinical use. J. Chemother. 22(3), 175–178 (2010).
  • Fernández L, Breidenstein EB, Hancock RE. Creeping baselines and adaptive resistance to antibiotics. Drug Resist. Updat. 14(1), 1–21 (2011).
  • Skiada A, Markogiannakis A, Plachouras D, Daikos GL. Adaptive resistance to cationic compounds in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 37(3), 187–193 (2011).
  • Zavascki AP, Goldani LZ, Li J, Nation RL. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother. 60(6), 1206–1215 (2007).
  • Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J. Antimicrob. Chemother. 66(9), 1963–1971 (2011).
  • Prasad P, Sun J, Danner RL, Natanson C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin. Infect. Dis. 54(12), 1699–1709 (2012).
  • Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 58(2), 256–265 (2006).
  • Peterson LR. A review of tigecycline-the first glycylcycline. Int. J. Antimicrob. Agents 32(Suppl. 4), S215–S222 (2008).
  • Hall BG, Barlow M. Revised Ambler classification of {β}-lactamases. J. Antimicrob. Chemother. 55(6), 1050–1051 (2005).
  • Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54(3), 969–976 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.