587
Views
39
CrossRef citations to date
0
Altmetric
Review

The immune response to severe bacterial infections: consequences for therapy

&
Pages 369-380 | Published online: 10 Jan 2014

References

  • Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med.29(7), 1303–1310 (2001).
  • Bosmann M, Russkamp NF, Patel VR, Zetoune FS, Sarma JV, Ward PA. The outcome of polymicrobial sepsis is independent of T and B cells. Shock36(4), 396–401 (2011).
  • Beutler BA. TLRs and innate immunity. Blood113(7), 1399–1407 (2009).
  • Weighardt H, Holzmann B. Role of Toll-like receptor response for sepsis pathogenesis. Immunobiology212(9–10), 715–722 (2008).
  • Jin X, Lin Z, Xie X. The delayed response of Toll-like receptors may relate to Pseudomonas aeruginosa keratitis exacerbating rapidly at the early stages of infection. Eur. J. Clin. Microbiol. Infect. Dis.29(2), 231–238 (2010).
  • Spiller S, Elson G, Ferstl R et al. TLR-induced IFN-γ production increases TLR2 sensitivity and drives Gram-negative sepsis in mice. J. Exp. Med.205(8), 1747–1754 (2008).
  • Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol.10(7), 479–490.
  • Smith RP, Baltch AL, Ritz WJ, Michelsen PB, Bopp LH. IFN-γ enhances killing of methicillin-resistant Staphylococcus aureus by human monocytes more effectively that GM-CSF in the presence of daptomycin and other antibiotics. Cytokine51(3), 274–277 (2010).
  • Lordoño D, Marques A, Hornung RL, Cadavid D. IL-10 helps control pathogen load during high-level bacteremia. J. Immunol.181(3), 2076–2083 (2008).
  • van der Poll T, van Zoelen MAD, Wiersinga WJ. Regulation of pro- and anti-inflammatory host responses. Contrib. Microbiol.17, 125–136 (2011).
  • Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu. Rev. Immunol.27, 229–265 (2009).
  • Porfyridis I, Plachouras D, Karagianni V et al. Diagnostic value of triggering receptor expressed on myeloid cells-1 and C-reactive protein for patients with lung infiltrates: an observational study. BMC Infect. Dis.10, 286 (2010).
  • Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and disease. Curr. Opin. Immunol.21(1), 38–46 (2009).
  • Gibot S, Kolopp-Sarda MN, Béné MC et al. A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J. Exp. Med.200(11), 1419–1426 (2004).
  • Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. RIG-I dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol.10(10), 1065–1073 (2009).
  • Sharma S, De Oliveira RB, Kalantari P et al. Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome. Immunity35(2), 194–207 (2011).
  • Kinjo Y, Illarionov P, Vela JL et al. Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat. Immunol.12(10), 966–975 (2011).
  • Giamarellos-Bourboulis EJ. What is the pathophysiology of the septic host upon admission? Int. J. Antimicrob. Agents36(Suppl. 2), S2–S5 (2010).
  • Uhlig HH, McKenzie BS, Hue S et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity25(2), 309–318 (2006).
  • O’Dwyer MJ, Mankan AK, White M et al. The human response to infection is associated with distinct patterns of interleukin 23 and interleukin 27 expression. Intensive Care Med.34(4), 683–691 (2008).
  • Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol.40(7), 1830–1835 (2010).
  • Vincent JL, Sun Q, Dubois MJ. Clinical trials of immunomodulatory therapies in severe sepsis and septic shock. Clin. Infect. Dis.34, 1084–1093 (2003).
  • Wang H, Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am. J. Emerg. Med.26(6), 711–715 (2008).
  • Bozza FA, Salluh JI, Japiassu AM et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit. Care11(2), R49 (2007).
  • Phua J, Koay ES, Lee KH. Lactate, procalcitonin, and amino-terminal pro-B-type natriuretic peptide versus cytokine measurements and clinical severity scores for prognostication in septic shock. Shock29(3), 328–333 (2008).
  • Emonts M, Sweep FC, Grebenchtchikov N et al. Association between high levels of blood macrophage migration inhibitory factor, inappropriate adrenal response, and early death in patients with severe sepsis. Crit. Care Med.44(10), 1321–1328 (2007).
  • Lukaszewicz AC, Grienay M, Resche-Rigon M et al. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit. Care Med.37(10), 2746–2752 (2009).
  • Sinistro A, Almerighi C, Ciaprini C et al. Downregulation of CD40 ligand response in monocytes form sepsis patients. Clin. Vacc. Immunol.15(12), 1851–1858 (2008).
  • Giamarellos-Bourboulis EJ, van de Veerdonk FL, Mouktaroudi M et al. Inhibition of caspase-1 activation in Gram-negative sepsis and experimental endotoxemia. Crit. Care15(1), R27 (2011).
  • O’Dwyer MJ, Mankan AK, Stordeur P et al. The occurrence of severe sepsis and septic shock are related to distinct patterns of cytokine gene expression. Shock26(6), 544–550 (2006).
  • Dimopoulou I, Pelekanou A, Mavrou I et al. Early serum levels of soluble triggering receptor expressed on myeloid cells-1 in septic patients: Correlation with monocyte gene expression. J. Crit. Care doi:10.1016/j.jcrc.2011.06.013 (2011) (Epub ahead of print).
  • Muenzer JT, Davis CG, Chang K et al. Characterization and modulation of the immunosuppressive phase of sepsis. Infect. Immun.78(4), 1582–1592 (2010).
  • Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis.181(1), 176–180 (2000).
  • Giamarellos-Bourboulis EJ, Zakynthinos S, Baziaka F et al. Soluble triggering receptor expressed on myeloid cells 1 as an anti-inflammatory mediator in sepsis. Intensive Care Med.32(2), 237–243 (2006).
  • Kessel A, Bamberger E, Masalha M, Toubi E. The role of T regulatory cells in sepsis. J. Autoimmun.32(3–4), 211–215 (2009).
  • Venet F, Pachot A, Debard AL et al. Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism. J. Immunol.177(9), 6540–6547 (2006).
  • Venet F, Chung CS, Kherouf H et al. Increased circulating regulatory T cells (CD4+CD25+CD127-) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med.35(4), 678–686 (2009).
  • Hotchkiss RS, Tinsley K W, Swanson PE et al. Sepsis- induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J. Immunol.166(11), 6952–6953 (2001).
  • Wesche DE, Lomas-Neira JL, Perl M, Chung CS, Ayala A. Leucocyte apoptosis and its significance in sepsis and shock. J. Leukoc. Biol.78(2), 325–337 (2005).
  • Unsinger J, McDonough JS, Shultz LD, Ferguson TA, Hotchkiss RS. Sepsis-induced human lymphocyte apoptosis and cytokine production in “humanized” mice. J. Leukoc. Biol.86(2), 219–227 (2009).
  • Martignoni A, Tschöp J, Goetzman HS et al. CD4-expressing cells are early mediators of the innate immune system during sepsis. Shock29(5), 591–597 (2008).
  • Chang KC, Unsinger J, Davis CG et al. Multiple triggers of cell death in sepsis: death receptor and mitochondrial-mediated apoptosis. FASEB J.21(3), 708–719 (2007).
  • Schmidt MV, Paulus P, Kuhn AM et al. Peroxisome proliferator-activated receptor γ-induced T cell apoptosis reduces survival during polymicrobial sepsis. Am. J. Resp. Crit. Care Med.184(1), 64–74 (2011).
  • Vaki I, Kranidioti H, Karagianni V et al. An early circulating factor in severe sepsis modulates apoptosis of monocytes and lymphocytes. J. Leukoc Biol.89(3), 343–349 (2011).
  • Rosas-Ballina M, Ochani M, Parrish WR et al. Splenic nerve is required for cholinergic anti-inflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA105(31), 11008–11013 (2008).
  • Su X, Matthay MA, Malik AB. Requisite role of the cholinergic α7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. J. Immunol.184(1), 401–410 (2009).
  • Etogo AO, Nunez J, Lin CY, Toliver-Kinsky TE, Sherwood ER. NK but not CD1-restricted NKT cells facilitate systemic inflammation during polymicrobial intra-abdominal sepsis. J. Immunol.180(9), 6334–6345 (2008).
  • Hu CK, Venet F, Heffernan DS, Wang YL et al. The role of hepatic invariant NKT cells in systemic/local inflammation and mortality during polymicrobial septic shock. J. Immunol.182(4), 2467–2475 (2009).
  • Kim JH, Kim SJ, Lee IM et al. Bacterial endotoxin induces the release of high mobility group box a via the IFN-β signaling pathway. J. Immunol.182(4), 2458–2466 (2009).
  • Gibot S, Massin F, Cravoisy A et al. High mobility group box 1 protein plasma concentrations during septic shock. Intensive Care Med.33(8), 1347–1353 (2007).
  • Silva E, Arcaroli J, He Q et al. HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury. Intensive Care Med.33(10), 1829–1839 (2007).
  • Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat. Immunol.8(10), 776–786 (2008).
  • Zhang Q, Raoof M, Chen Y et al. Circulating mitochondrial DAMPs cause inflammation response to injury. Nature464(7285), 104–108 (2010).
  • Pelekanou A, Tsangaris I, Kotsaki A et al. Decrease of CD4-lymphocytes and apoptosis of CD14-monocytes are characteristic alterations in sepsis caused by ventilator-associated pneumonia: results from an observational study. Crit. Care13(6), R172 (2009).
  • Gogos C, Kotsaki A, Pelekanou A et al. Early alterations of the innate and adaptive immune statuses in sepsis according to the type of underlying infection. Crit. Care14(3), R96 (2010).
  • van Zoelen MAD, Laterre PF, van Veen SQ et al. Systemic and local high mobility group box 1 concentrations during severe infections. Crit. Care Med.35(12), 2799–2804 (2007).
  • Kasten KR, Prakash PS, Unsinger J et al. Interleukin-7 (IL-7) treatment accelerates neutrophils recruitment through γδ T-cell IL-17 production in a murine model of sepsis. Infect. Immun.78(11), 4714–4722 (2010).
  • Flohé SB, Agrawal H, Flohé S, Rani M, Bangen JM, Schade FU. Diversity of interferon γ and granulocyte–macrophage-colony stimulating factor in restoring immune dysfunction of dendritic cells and macrophages during polymicrobial sepsis. Mol. Med.14(5–6), 247–256 (2008).
  • Bo L, Wang F, Zhu J, Li J, Deng X. Granulocyte-colony stimulating factor (G-CSF) and granulocyte–macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis. Crit. Care15(1), R58 (2011).
  • Stephens DP, Thomas JH, Dip G et al. Randomized, double-blind, placebo-controlled trials of ganulocyte colony stimulating factor in patients with septic shock. Crit. Care Med.36(2), 448–454 (2008).
  • Cheng AC, Limmathurotsakul D, Chierakul W et al. A randomized controlled trial of granulocyte colony-stimulating factor for the treatment of severe sepsis due to melioidosis in Thailand. Clin. Infect. Dis.45(3), 308–314 (2007).
  • Rosenbloom AJ, Linden PK, Dorrance A, Penkosky N, Cohen-Melamed MH, Rinsky MR. Effect of granulocyte-monocyte colony-stimulating factor therapy on leukocyte function and clearance of serious infection in non-neutropenic patients. Chest127(6), 2139–2150 (2005).
  • Schefold JC, Zeden JP, Pschowski R et al. Treatment with granulocyte–macrophage colony-stimulating factor is associated with reduced indoleamine 2,3-dioxygenase activity and kynurenine pathway catabolites in patients with severe sepsis and septic shock. Scand. J. Infect. Dis.42(3), 164–171 (2010).
  • Hall MW, Knatz NL, Vetterly C et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med.37(3), 525–532 (2011).
  • Döcke WD, Randow F, Syrbe U et al. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nat. Med.3(6), 678–681 (1997).
  • Cruz DN, Perazella MA, Bellomo R et al. Effectiveness of polymyxin B-immobilized fiber column in sepsis: a systematic review. Crit. Care11(2), R47 (2007).
  • Shimizu T, Hanasawa K, Sato K et al. Direct hemoperfusion with polymyxin-B-immobilized fiber columns improves septic hypotension and reduces inflammatory mediators in septic patients with colorectal perforation. Langenbecks Arch. Surg.394(2), 303–311 (2009).
  • Kushi H, Miki T, Okamaoto K, Nakahara J, Saito T, Tanjoh K. Early hemoperfusion with an immobilized polymyxin B fiber column eliminates humoral mediators and improves pulmonary oxygenation. Crit. Care9(6), R653–R661 (2005).
  • Ono S, Tsujimoto H, Matsumoto A, Ikuta S, Kinoshita M, Mochizuki H. Modulation of human leukocyte antigen-DR on monocytes and CD16 on granulocytes in patients with septic shock using hemoperfusion with polymyxin B-immobilized fiber. Am. J. Surg.188(2), 150–156 (2004).
  • Vincent JL, Laterre PF, Cohen J et al. A pilot-controlled study of a polymyxin B-immobilized hemoperfusion cartridge in patients with severe sepsis secondary to intra-abdominal infection. Shock23(5), 400–405 (2005).
  • Cruz DN, Antonelli M, Fumagalli R et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA301(23), 2445–2452 (2009).
  • Mitaka C, Tsuchida N, Kawada K, Nakajima Y, Imai T, Sasaki S. A longer duration of polymyxin B-immobilized fiber column hemoperfusion improves pulmonary oxygenation in patients with septic shock. Shock32(5), 478–483 (2009).
  • Mullarkey M, Rose JR, Bristol J et al. Inhibition of endotoxin response by E5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J. Pharmacol. Exp. Ther.304(3), 1093–1102 (2003).
  • Tidswell M, Tillis W, LaRosa SP et al. Phase 2 trial of eritoran tetrasodium (E5564), a Toll-like receptor 4 antagonist, in patients with severe sepsis. Crit. Care Med.38(1), 72–83 (2010).
  • Kalil AC, Larosa SP, Gogate J, Lynn M, Opal SM. Influence of severity of illness on the effects of eritoran tetrasodium (E5564) and on other therapies for severe sepsis. Shock36(4), 327–331 (2011).
  • Giamarellos-Bourboulis EJ. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int. J. Antimicrob. Agents31(1), 12–20 (2008).
  • García Vázquez E, Mensa J, Martínez JA et al. Lower mortality among patients with community-acquired pneumonia treated with a aacrolide plus a beta-lactam agent versus a beta-lactam agent alone. Eur. J. Clin. Microbiol. Infect. Dis.24, 190–195 (2005).
  • Martínez , JA, Horcajada JP, Almela M et al. Addition of a macrolide to a beta-lactam-based empirical antibiotic regimen is associated with lower in-hospital mortality for patients with bacteremic pneumococcal pneumonia. Clin. Infect. Dis.36, 389–395 (2003).
  • Restrepo MI, Mortensen EM, Waterer GW, Wunderink RG, Coalson JJ, Anzueto A. Impact of macrolide therapy on mortality for patients with severe sepsis due to pneumonia. Eur. Respir. J.33(1), 153–159 (2009).
  • Giamarellos-Bourboulis EJ, Pechère JC, Routsi C et al. Effect of clarithromycin in patients with sepsis and ventilator-associated pneumonia. Clin. Infect. Dis.46(8), 1157–1164 (2008).
  • Chastre J, Wolff W, Fagon JY et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults. JAMA290(19), 2588–2598 (2003).
  • Thomsen RW, Riis A, Kornum JB, Christensen S, Johnsen SP, Sørensen HT. Preadmission use of statins and outcomes after hospitalization with pneumonia. Arch. Intern. Med.168(19), 2081–2087 (2008).
  • O’ Neal HR Jr, Koyama T, Koehler EAS et al. Prehospital statin and aspirin use and the prevalence of severe sepsis and acute lung injury/acure respiratory distress syndrome. Crti. Care Med.39(6), 1343–1350 (2011).
  • Novack V, Eisinger M, Frenkel A et al. The effects of statin therapy on inflammatory cytokines in patients with bacterial infections: a randomized double-blind placebo controlled clinical trial. Intensive Care Med.35(7), 1255–1260 (2009).
  • Wesche-Soldato DE, Swan RZ, Chung CS, Ayala A. The apoptotic pathway as a therapeutic target in sepsis. Curr. Drug Targets8(4), 493–500 (2007).
  • Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim. Biophys. Acta1799(1–2), 149–156 (2010).
  • Dellinger RP, Levy MM, Carlet JM et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med.36(1), 296–327 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.