267
Views
62
CrossRef citations to date
0
Altmetric
Review

Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms

, &
Pages 1055-1066 | Published online: 10 Jan 2014

References

  • Mitchison DA. The diagnosis and therapy of tuberculosis during the past 100 years. Am. J. Respir. Crit. Care Med. 171(7), 699–706 (2005).
  • BMC. Controlled clinical trial of short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Lancet 1(7760), 1079–1085 (1972).
  • Dye C, Lönnroth K, Jaramillo E, Williams BG, Raviglione M. Trends in tuberculosis incidence and their determinants in 134 countries. Bull. World Health Organ. 87(9), 683–691 (2009).
  • Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int. J. Tuberc. Lung Dis. 2(1), 10–15 (1998).
  • Ormerod LP. Multidrug-resistant tuberculosis (MDR-TB): epidemiology, prevention and treatment. Br. Med. Bull 73, 17–24 (2005).
  • Harrington M. From HIV to tuberculosis and back again: a tale of activism in 2 pandemics. Clin. Infect. Dis. 50(Suppl. 3), S260–S266 (2010).
  • Aaron L, Saadoun D, Calatroni I et al. Tuberculosis in HIV-infected patients: a comprehensive review. Clin. Microbiol. Infect. 10(5), 388–398 (2004).
  • Jindani A, Doré CJ, Mitchison DA. Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days. Am. J. Respir. Crit. Care Med. 167(10), 1348–1354 (2003).
  • Dubos RJ, Middlebrook G. The effect of wetting agents on the growth of tubercle bacilli. J. Exp. Med. 88(1), 81–88 (1948).
  • Van Boxtel RM, Lambrecht RS, Collins MT. Effects of colonial morphology and Tween 80 on antimicrobial susceptibility of Mycobacterium paratuberculosis. Antimicrob. Agents Chemother. 34(12), 2300–2303 (1990).
  • Lam J, Chan R, Lam K, Costerton JW. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28(2), 546–556 (1980).
  • Costerton JW, Irvin RT, Cheng KJ. The role of bacterial surface structures in pathogenesis. Crit. Rev. Microbiol. 8(4), 303–338 (1981).
  • Kolter R, Losick R. One for all and all for one. Science 280(5361), 226–227 (1998).
  • Blankenship JR, Mitchell AP. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol. 9(6), 588–594 (2006).
  • Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002).
  • Hogan DA, Kolter R. Pseudomonas candida interactions: an ecological role for virulence factors. Science 296(5576), 2229–2232 (2002).
  • Allison DG. The biofilm matrix. Biofouling 19(2), 139–150 (2003).
  • Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 13(1), 20–26 (2005).
  • Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. USA 106(38), 16393–16399 (2009).
  • Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 13(1), 34–40 (2005).
  • Hall-Stoodley L, Stoodley P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 13(1), 7–10 (2005).
  • Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6(3), 199–210 (2008).
  • Vlamakis H, Aguilar C, Losick R, Kolter R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22(7), 945–953 (2008).
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 284(5418), 1318–1322 (1999).
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167–193 (2002).
  • Danese PN, Pratt LA, Dove SL, Kolter R. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol. Microbiol. 37(2), 424–432 (2000).
  • Chen JM, German GJ, Alexander DC, Ren H, Tan T, Liu J. Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J. Bacteriol. 188(2), 633–641 (2006).
  • Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol. Microbiol. 49(4), 905–918 (2003).
  • Kolter R, Greenberg EP. Microbial sciences: the superficial life of microbes. Nature 441(7091), 300–302 (2006).
  • O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to study of biofilms. Meth. Enzymol. 310, 91–109 (1999).
  • Carman ML, Estes TG, Feinberg AW et al. Engineered antifouling microtopographies – correlating wettability with cell attachment. Biofouling 22(1-2), 11–21 (2006).
  • Nudleman E, Kaiser D. Pulling together with type IV pili. J. Mol. Microbiol. Biotechnol. 7(1–2), 52–62 (2004).
  • Proft T, Baker EN. Pili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease. Cell. Mol. Life Sci. 66(4), 613–635 (2009).
  • Ogasawara H, Yamamoto K, Ishihama A. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J. Bacteriol. 193(10), 2587–2597 (2011).
  • Cotter PA, Stibitz S. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10(1), 17–23 (2007).
  • Hammer BK, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50(1), 101–104 (2003).
  • Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450(7171), 883–886 (2007).
  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361), 295–298 (1998).
  • Kearns DB, Chu F, Branda SS, Kolter R, Losick R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55(3), 739–749 (2005).
  • Chu F, Kearns DB, Branda SS, Kolter R, Losick R. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol. Microbiol. 59(4), 1216–1228 (2006).
  • Chai Y, Chu F, Kolter R, Losick R. Bistability and biofilm formation in Bacillus subtilis. Mol. Microbiol. 67(2), 254–263 (2008).
  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2(2), 95–108 (2004).
  • Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186(24), 8172–8180 (2004).
  • Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9(1), 34–39 (2001).
  • McNeill K, Hamilton IR. Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett. 221(1), 25–30 (2003).
  • Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69(4), 2313–2320 (2003).
  • Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47(1), 317–323 (2003).
  • Hall-Stoodley L, Stoodley P. Developmental regulation of microbial biofilms. Curr. Opin. Biotechnol. 13(3), 228–233 (2002).
  • Lazazzera BA. Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr. Opin. Microbiol. 8(2), 222–227 (2005).
  • Gilbert P, Allison DG, McBain AJ. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? Symp. Ser. Soc. Appl. Microbiol. 31, 98S–110S (2002).
  • Post JC, Stoodley P, Hall-Stoodley L, Ehrlich GD. The role of biofilms in otolaryngologic infections. Curr. Opin. Otolaryngol. Head Neck Surg. 12(3), 185–190 (2004).
  • Sbordone L, Bortolaia C. Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease. Clin. Oral Investig. 7(4), 181–188 (2003).
  • Yoon SS, Hennigan RF, Hilliard GM et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev. Cell 3(4), 593–603 (2002).
  • Marrie TJ, Nelligan J, Costerton JW. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66(6), 1339–1341 (1982).
  • Anderson GG, Dodson KW, Hooton TM, Hultgren SJ. Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol. 12(9), 424–430 (2004).
  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35(4), 322–332 (2010).
  • Jensen PØ, Givskov M, Bjarnsholt T, Moser C. The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol. Med. Microbiol. 59(3), 292–305 (2010).
  • Van Gennip M, Christensen LD, Alhede M et al. Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117(7), 537–546 (2009).
  • Moss RB, Hsu YP, Olds L. Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clin. Exp. Immunol. 120(3), 518–525 (2000).
  • Leid JG, Shirtliff ME, Costerton JW, Stoodley P. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect. Immun. 70(11), 6339–6345 (2002).
  • Prabhakara R, Harro JM, Leid JG, Harris M, Shirtliff ME. Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect. Immun. 79(4), 1789–1796 (2011).
  • Moser C, Kjaergaard S, Pressler T, Kharazmi A, Koch C, Høiby N. The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. APMIS 108(5), 329–335 (2000).
  • Saginur R, Stdenis M, Ferris W et al. Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob. Agents Chemother. 50(1), 55–61 (2006).
  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37(6), 1771–1776 (1999).
  • Banin E, Brady KM, Greenberg EP. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl. Environ. Microbiol. 72(3), 2064–2069 (2006).
  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. d-amino acids trigger biofilm disassembly. Science 328(5978), 627–629 (2010).
  • Canetti G, Gay P, Le Lirzin M. Trends in the prevalence of primary drug resistance in pulmonary tuberculosis in France from 1962 to 1970: a national survey. Tubercle 53(2), 57–83 (1972).
  • Lenaerts AJ, Hoff D, Aly S et al. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob. Agents Chemother. 51(9), 3338–3345 (2007).
  • Alteri CJ, Xicohténcatl-Cortes J, Hess S, Caballero-Olín G, Girón JA, Friedman RL. Mycobacterium tuberculosis produces pili during human infection. Proc. Natl. Acad. Sci. USA 104(12), 5145–5150 (2007).
  • Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR. A replication clock for Mycobacterium tuberculosis. Nat. Med. 15(2), 211–214 (2009).
  • Barry CE 3rd, Boshoff HI, Dartois V et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7(12), 845–855 (2009).
  • Rhoades ER, Geisel RE, Butcher BA, McDonough S, Russell DG. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb). 85(3), 159–176 (2005).
  • Lin PL, Flynn JL. Understanding latent tuberculosis: a moving target. J. Immunol. 185(1), 15–22 (2010).
  • Ford CB, Lin PL, Chase MR et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet. 43(5), 482–486 (2011).
  • Yong DB, Gideon HP, Wilkinson RJ. Eliminating latent tuberculosis. Trends Microbiol. 17(15), 183–188 (2009).
  • Ulrichs T, Kosmiadi GA, Jörg S et al. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J. Infect. Dis. 192(1), 89–97 (2005).
  • Lazarevic V, Nolt D, Flynn JL. Long-term control of Mycobacterium tuberculosis infection is mediated by dynamic immune responses. J. Immunol. 175(2), 1107–1117 (2005).
  • Young DB, Gideon HP, Wilkinson RJ. Eliminating latent tuberculosis. Trends Microbiol. 17(5), 183–188 (2009).
  • Parrish NM, Dick JD, Bishai WR. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 6(3), 107–112 (1998).
  • Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb.) 84(1-2), 29–44 (2004).
  • Medlar EM, Bernstein S, Steward DM. A bacteriologic study of resected tuberculous lesions. Am. Rev. Tuberc. 66(1), 36–43 (1952).
  • Loring WE, Vandiviere HM. The treated pulmonary lesion and its tubercle bacillus. I. Pathology and pathogenesis. Am. J. Med. Sci. 232(1), 20–29 (1956).
  • Loring WW, Melvin I, Vandiviere HM, Willis HS. The death and resurrection of the tubercle bacillus. Trans. Am. Clin. Climatol. Assoc. 67, 132–138 (1955).
  • McCune RM, Feldmann FM, Lambert HP, McDermott W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123(3), 445–468 (1966).
  • Mccune RM Jr, Mcdermott W, Tompsett R. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J. Exp. Med. 104(5), 763–802 (1956).
  • Haapanen JH, Kass I, Gensini G, Middlebrook G. Studies on the gaseous content of tuberculous cavities. Am. Rev. Respir. Dis. 80(Part 1), 1–5 (1959).
  • Vandiviere HM, Loring WE, Melvin I, Willis S. The treated pulmonary lesion and its tubercle bacillus. II. The death and resurrection. Am. J. Med. Sci. 232(1), 30–37; passim (1956).
  • Via LE, Lin PL, Ray SM et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76(6), 2333–2340 (2008).
  • Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64(6), 2062–2069 (1996).
  • Rustad TR, Harrell MI, Liao R, Sherman DR. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS ONE 3(1), e1502 (2008).
  • Park HD, Guinn KM, Harrell MI et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48(3), 833–843 (2003).
  • Morris RP, Nguyen L, Gatfield J et al. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 102(34), 12200–12205 (2005).
  • Baek SH, Li AH, Sassetti CM. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 9(5), e1001065 (2011).
  • Aldridge BB, Fernandez-Suarez M, Heller D et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335(6064), 100–104 (2012).
  • Nikaido H, Jarlier V. Permeability of the mycobacterial cell wall. Res. Microbiol. 142(4), 437–443 (1991).
  • Hall-Stoodley L, Brun OS, Polshyna G, Barker LP. Mycobacterium marinum biofilm formation reveals cording morphology. FEMS Microbiol. Lett. 257(1), 43–49 (2006).
  • Bosio S, Leekha S, Gamb SI, Wright AJ, Terrell CL, Miller DV. Mycobacterium fortuitum prosthetic valve endocarditis: a case for the pathogenetic role of biofilms. Cardiovasc. Pathol. 21(4), 361–364 (2012).
  • Feazel LM, Baumgartner LK, Peterson KL et al. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. USA 106(38), 16393–16399 (2009).
  • Cook KL, Britt JS, Bolster CH. Survival of Mycobacterium avium subsp. paratuberculosis in biofilms on livestock watering trough materials. Vet. Microbiol. 141(1–2), 103–109 (2010).
  • Recht J, Kolter R. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J. Bacteriol. 183(19), 5718–5724 (2001).
  • Yamazaki Y, Danelishvili L, Wu M, Macnab M, Bermudez LE. Mycobacterium avium genes associated with the ability to form a biofilm. Appl. Environ. Microbiol. 72(1), 819–825 (2006).
  • Ojha AK, Baughn AD, Sambandan D et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69(1), 164–174 (2008).
  • Ojha AK, Trivelli X, Guerardel Y, Kremer L, Hatfull GF. Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J. Biol. Chem. 285(23), 17380–17389 (2010).
  • Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR Jr, Hatfull GF. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123(5), 861–873 (2005).
  • Ojha A, Hatfull GF. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol. Microbiol. 66(2), 468–483 (2007).
  • Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA 102(31), 11076–11081 (2005).
  • Pang JM, Layre E, Sweet L et al. The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J. Bacteriol. 194(3), 715–721 (2012).
  • Marsollier L, Aubry J, Coutanceau E et al. Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide toxin, mycolactone. Cell. Microbiol. 7(7), 935–943 (2005).
  • Carter G, Wu M, Drummond DC, Bermudez LE. Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J. Med. Microbiol. 52(Pt 9), 747–752 (2003).
  • George KM, Chatterjee D, Gunawardana G et al. Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283(5403), 854–857 (1999).
  • Teng R, Dick T. Isoniazid resistance of exponentially growing Mycobacterium smegmatis biofilm culture. FEMS Microbiol. Lett. 227(2), 171–174 (2003).
  • McNabe M, Tennant R, Danelishvili L, Young L, Bermudez LE. Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials. Clin. Microbiol. Infect. 17(5), 697–703 (2011).
  • Nguyen KT, Piastro K, Gray TA, Derbyshire KM. Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis. J. Bacteriol. 192(19), 5134–5142 (2010).
  • da Silva PE, Von Groll A, Martin A, Palomino JC. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol. 63(1), 1–9 (2011).
  • Colangeli R, Helb D, Vilchèze C et al. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog. 3(6), e87 (2007).
  • Vilchèze C, Av-Gay Y, Barnes SW et al. Coresistance to isoniazid and ethionamide maps to mycothiol biosynthetic genes in Mycobacterium bovis. Antimicrob. Agents Chemother. 55(9), 4422–4423 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.