160
Views
52
CrossRef citations to date
0
Altmetric
Review

DNA methylation changes in prostate cancer: current developments and future clinical implementation

Pages 243-257 | Published online: 09 Jan 2014

References

  • Quinn DI, Henshall SM, Sutherland RL. Molecular markers of prostate cancer outcome. Eur. J. Cancer41(6), 858–887 (2005).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2007. CA Cancer J. Clin.57(1), 43–66 (2007).
  • Yao SL, Lu-Yao G. Understanding and appreciating overdiagnosis in the PSA era. J. Natl Cancer Inst.94(13), 958–960 (2002).
  • Alers JC, Krijtenburg PJ, Vis AN et al. Molecular cytogenetic analysis of prostatic adenocarcinomas from screening studies : early cancers may contain aggressive genetic features. Am. J. Pathol.158(2), 399–406 (2001).
  • Han M, Partin AW, Zahurak M et al. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J. Urol.169(2), 517–523 (2003).
  • Barratt AL, Coates AS. Screening decreases prostate cancer death: first analysis of the 1988 Quebec Prospective Randomized Controlled Trial. Med. J. Aust.181(4), 213–214 (2004).
  • Labrie F, Candas B, Dupont A et al. Screening decreases prostate cancer death: first analysis of the 1988 Quebec Prospective Randomized Controlled Trial. Prostate38(2), 83–91 (1999).
  • Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res.72, 141–196 (1998).
  • Bird A. The essentials of DNA methylation. Cell70(1), 5–8 (1992).
  • Merlo A, Herman JG, Mao L et al. 5´ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med.1(7), 686–692 (1995).
  • Herman JG, Umar A, Polyak K et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA95(12), 6870–6875 (1998).
  • Hoque MO, Topaloglu O, Begum S et al. Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J. Clin. Oncol.23(27), 6569–6575 (2005).
  • Cooper CS, Foster CS. Concepts of epigenetics in prostate cancer development. Br. J. Cancer100(2), 240–245 (2009).
  • Nelson WG, Yegnasubramanian S, Agoston AT et al. Abnormal DNA methylation, epigenetics, and prostate cancer. Front. Biosci.12, 4254–4266 (2007).
  • Dobosy JR, Roberts JL, Fu VX, Jarrard DF. The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia. J. Urol.177(3), 822–831 (2007).
  • Li LC. Epigenetics of prostate cancer. Front. Biosci.12, 3377–3397 (2007).
  • Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet.8(4), 286–298 (2007).
  • Hoque MO, Kim MS, Ostrow KL et al. Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res.68(8), 2661–2670 (2008).
  • Ngan RK, Lau WH, Yip TT et al. Remarkable application of serum EBV EBER-1 in monitoring response of nasopharyngeal cancer patients to salvage chemotherapy. Ann. NY Acad. Sci.945, 73–79 (2001).
  • Lo YM. Prognostic implication of pretreatment plasma/serum concentration of Epstein–Barr virus DNA in nasopharyngeal carcinoma. Biomed. Pharmacother.55(7), 362–365 (2001).
  • Sidransky D, Von Eschenbach A, Tsai YC et al. Identification of p53 gene mutations in bladder cancers and urine samples. Science252(5006), 706–709 (1991).
  • Cairns P. Gene methylation and early detection of genitourinary cancer: the road ahead. Nat. Rev. Cancer7(7), 531–543 (2007).
  • Hoque MO, Begum S, Topaloglu O et al. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res.64(15), 5511–5517 (2004).
  • Topaloglu O, Hoque MO, Tokumaru Y et al. Detection of promoter hypermethylation of multiple genes in the tumor and bronchoalveolar lavage of patients with lung cancer. Clin. Cancer Res.10(7), 2284–2288 (2004).
  • Hoque MO, Begum S, Topaloglu O et al. Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J. Natl Cancer Inst.98(14), 996–1004 (2006).
  • Hoque MO, Feng Q, Toure P et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J. Clin. Oncol.24(26), 4262–4269 (2006).
  • Henrique R, Costa VL, Cerveira N et al. Hypermethylation of Cyclin D2 is associated with loss of mRNA expression and tumor development in prostate cancer. J. Mol. Med.84(11), 911–918 (2006).
  • Henrique R, Jeronimo C, Hoque MO et al. Frequent 14-13-3s promoter methylation in benign and malignant prostate lesions. DNA Cell Biol.24(4), 264–269 (2005).
  • Henrique R, Jeronimo C, Hoque MO et al.MT1G hypermethylation is associated with higher tumor stage in prostate cancer. Cancer Epidemiol. Biomarkers Prev.14(5), 1274–1278 (2005).
  • Henrique R, Jeronimo C, Teixeira MR et al. Epigenetic heterogeneity of high-grade prostatic intraepithelial neoplasia: clues for clonal progression in prostate carcinogenesis. Mol. Cancer Res.4(1), 1–8 (2006).
  • Henrique R, Ribeiro FR, Fonseca D et al. High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin. Cancer Res.13(20), 6122–6129 (2007).
  • Jeronimo C, Henrique R, Hoque MO et al. A quantitative promoter methylation profile of prostate cancer. Clin. Cancer Res.10(24), 8472–8478 (2004).
  • Jeronimo C, Usadel H, Henrique R et al. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology60(6), 1131–1135 (2002).
  • Nakayama M, Bennett CJ, Hicks JL et al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am. J. Pathol.163(3), 923–933 (2003).
  • Lombaerts M, van Wezel T, Philippo K et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br. J. Cancer94(5), 661–671 (2006).
  • Li LC, Shiina H, Deguchi M et al. Age-dependent methylation of ESR1 gene in prostate cancer. Biochem. Biophys. Res. Commun.321(2), 455–461 (2004).
  • Wang Q, Williamson M, Bott S et al. Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer. Oncogene26(45), 6560–6565 (2007).
  • Kwabi-Addo B, Ren C, Ittmann M. DNA methylation and aberrant expression of sprouty1 in human prostate cancer. Epigenetics4(1) (2009).
  • Wang J, Thompson B, Ren C, Ittmann M, Kwabi-Addo B. Sprouty4, a suppressor of tumor cell motility, is down regulated by DNA methylation in human prostate cancer. Prostate66(6), 613–624 (2006).
  • Enokida H, Shiina H, Urakami S et al. Multigene methylation analysis for detection and staging of prostate cancer. Clin. Cancer Res.11(18), 6582–6588 (2005).
  • Suzuki M, Shigematsu H, Shivapurkar N et al. Methylation of apoptosis related genes in the pathogenesis and prognosis of prostate cancer. Cancer Lett.242(2), 222–230 (2006).
  • Bachmann N, Haeusler J, Luedeke M et al. Expression changes of CAV1 and EZH2, located on 7q31 approximately q36, are rarely related to genomic alterations in primary prostate carcinoma. Cancer Genet. Cytogenet.182(2), 103–110 (2008).
  • Cui J, Rohr LR, Swanson G et al. Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate46(3), 249–256 (2001).
  • Padar A, Sathyanarayana UG, Suzuki M et al. Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin. Cancer Res.9(13), 4730–4734 (2003).
  • Rosenbaum E, Hoque MO, Cohen Y et al. Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin. Cancer Res.11(23), 8321–8325 (2005).
  • Hanson JA, Gillespie JW, Grover A et al. Gene promoter methylation in prostate tumor-associated stromal cells. J. Natl Cancer Inst.98(4), 255–261 (2006).
  • Woodson K, Hayes R, Wideroff L, Villaruz L, Tangrea J. Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate55(3), 199–205 (2003).
  • Woodson K, O’Reilly KJ, Ward DE et al.CD44 and PTGS2 methylation are independent prognostic markers for biochemical recurrence among prostate cancer patients with clinically localized disease. Epigenetics1(4), 183–186 (2006).
  • Cheng Y, Kim JW, Liu W et al. Genetic and epigenetic inactivation of TNFRSF10C in human prostate cancer. Prostate69(3), 327–335 (2009).
  • Yamanaka M, Watanabe M, Yamada Y et al. Altered methylation of multiple genes in carcinogenesis of the prostate. Int. J. Cancer106(3), 382–387 (2003).
  • Nelson JB, Lee WH, Nguyen SH et al. Methylation of the 5´ CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer Res.57(1), 35–37 (1997).
  • Jeronimo C, Henrique R, Campos PF et al. Endothelin B receptor gene hypermethylation in prostate adenocarcinoma. J. Clin. Pathol.56(1), 52–55 (2003).
  • Yegnasubramanian S, Kowalski J, Gonzalgo ML et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res.64(6), 1975–1986 (2004).
  • Moriyama-Gonda N, Shiina H, Terashima M, Satoh K, Igawa M. Rationale and clinical implication of combined chemotherapy with cisplatin and oestrogen in prostate cancer: primary evidence based on methylation analysis of oestrogen receptor-α. BJU Int.101(4), 485–491 (2008).
  • Sasaki M, Tanaka Y, Perinchery G et al. Methylation and inactivation of estrogen, progesterone, and androgen receptors in prostate cancer. J. Natl Cancer Inst.94(5), 384–390 (2002).
  • Lau KM, LaSpina M, Long J, Ho SM. Expression of estrogen receptor (ER)-α and ER-β in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res.60(12), 3175–3182 (2000).
  • Zhu X, Leav I, Leung YK et al. Dynamic regulation of estrogen receptor-β expression by DNA methylation during prostate cancer development and metastasis. Am. J. Pathol.164(6), 2003–2012 (2004).
  • Maruyama R, Toyooka S, Toyooka KO et al. Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin. Cancer Res.8(2), 514–519 (2002).
  • Lee WH, Morton RA, Epstein JI et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl Acad. Sci. USA91(24), 11733–11737 (1994).
  • Jeronimo C, Usadel H, Henrique R et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J. Natl Cancer Inst.93(22), 1747–1752 (2001).
  • Kim JW, Cheng Y, Liu W et al. Genetic and epigenetic inactivation of LPL gene in human prostate cancer. Int. J. Cancer124(3), 734–738 (2009).
  • Sathyanarayana UG, Padar A, M et al. Aberrant promoter methylation of laminin-5-encoding genes in prostate cancers and its relationship to clinicopathological features. Clin. Cancer Res.9(17), 6395–6400 (2003).
  • Bastian PJ, Ellinger J, Wellmann A et al. Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin. Cancer Res.11(11), 4097–4106 (2005).
  • Jeronimo C, Henrique R, Hoque MO et al. Quantitative RARβ2 hypermethylation: a promising prostate cancer marker. Clin. Cancer Res.10(12 Pt 1), 4010–4014 (2004).
  • Liu L, Yoon JH, Dammann R, Pfeifer GP. Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene21(44), 6835–6840 (2002).
  • Shah JN, Shao G, Hei TK, Zhao Y. Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR. BMC Cancer8, 284 (2008).
  • Guan M, Xu C, Zhang F, Ye C. Aberrant methylation of EphA7 in human prostate cancer and its relation to clinicopathologic features. Int. J. Cancer124(1), 88–94 (2009).
  • Guo L, Zhong D, Lau S et al. Sox7 Is an independent checkpoint for β-catenin function in prostate and colon epithelial cells. Mol. Cancer Res.6(9), 1421–1430 (2008).
  • Aitchison AA, Veerakumarasivam A, Vias M et al. Promoter methylation correlates with reduced Smad4 expression in advanced prostate cancer. Prostate68(6), 661–674 (2008).
  • Higuchi T, Nakamura M, Shimada K et al.HRK inactivation associated with promoter methylation and LOH in prostate cancer. Prostate68(1), 105–113 (2008).
  • Yu YP, Yu G, Tseng G et al. Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res.67(17), 8043–8050 (2007).
  • Pulukuri SM, Patibandla S, Patel J, Estes N, Rao JS. Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene26(36), 5229–5237 (2007).
  • Leiblich A, Cross SS, Catto JW et al. Lactate dehydrogenase-B is silenced by promoter hypermethylation in human prostate cancer. Oncogene25(20), 2953–2960 (2006).
  • Guan M, Zhou X, Soulitzis N, Spandidos DA, Popescu NC. Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications. Clin. Cancer Res.12(5), 1412–1419 (2006).
  • Vanaja DK, Ballman KV, Morlan BW et al.PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin. Cancer Res.12(4), 1128–1136 (2006).
  • Yu G, Tseng GC, Yu YP et al.CSR1 suppresses tumor growth and metastasis of prostate cancer. Am. J. Pathol.168(2), 597–607 (2006).
  • Kim H, Lapointe J, Kaygusuz G et al. The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer. Cancer Res.65(18), 8118–8124 (2005).
  • Ropke A, Buhtz P, Bohm M et al. Promoter CpG hypermethylation and downregulation of DICE1 expression in prostate cancer. Oncogene24(44), 6667–6675 (2005).
  • Zhang J, Liu L, Pfeifer GP. Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor b gene. Oncogene23(12), 2241–2249 (2004).
  • Tokumaru Y, Sun DI, Nomoto S, Yamashita K, Sidransky D. Re: is TIG1 a new tumor suppressor in prostate cancer? J. Natl Cancer Inst.95(12), 919–920 (2003).
  • Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol.3(12), 755–763 (2002).
  • Belinsky SA, Liechty KC, Gentry FD et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res.66(6), 3338–3344 (2006).
  • Goessl C, Krause H, Muller M et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res.60(21), 5941–5945 (2000).
  • Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin. Cancer Res.9(7), 2673–2677 (2003).
  • Yegnasubramanian S, Lin X, Haffner MC, DeMarzo AM, Nelson WG. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res.34(3), e19 (2006).
  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93(18), 9821–9826 (1996).
  • Goessl C, Muller M, Heicappell R et al. DNA-based detection of prostate cancer in urine after prostatic massage. Urology58(3), 335–338 (2001).
  • Cairns P, Esteller M, Herman JG et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin. Cancer Res.7(9), 2727–2730 (2001).
  • Roupret M, Hupertan V, Yates DR et al. Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage. Clin. Cancer Res.13(6), 1720–1725 (2007).
  • Woodson K, O’Reilly KJ, Hanson JC et al. The usefulness of the detection of GSTP1 methylation in urine as a biomarker in the diagnosis of prostate cancer. J. Urol.179(2), 508–511; discussion: 511–502 (2008).
  • Vener T, Derecho C, Baden J et al. Development of a multiplexed urine assay for prostate cancer diagnosis. Clin. Chem.54(5), 874–882 (2008).
  • Sunami E, Shinozaki M, Higano CS et al. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin. Chem.55(3), 559–67 (2009).
  • Reibenwein J, Pils D, Horak P et al. Promoter hypermethylation of GSTP1, AR, and 14-13-3s in serum of prostate cancer patients and its clinical relevance. Prostate67(4), 427–432 (2007).
  • Bastian PJ, Palapattu GS, Yegnasubramanian S et al. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J. Urol.179(2), 529–534; discussion: 534–525 (2008).
  • Ellinger J, Haan K, Heukamp LC et al. CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate68(1), 42–49 (2008).
  • Cottrell S, Jung K, Kristiansen G et al. Discovery and validation of 3 novel DNA methylation markers of prostate cancer prognosis. J. Urol.177(5), 1753–1758 (2007).
  • Bastian PJ, Ellinger J, Heukamp LC et al. Prognostic value of CpG island hypermethylation at PTGS2, RAR-β, EDNRB, and other gene loci in patients undergoing radical prostatectomy. Eur. Urol.51(3), 665–674; discussion: 674 (2007).
  • Suzuki M, Shigematsu H, Shames DS et al. DNA methylation-associated inactivation of TGFβ-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers. Br. J. Cancer93(9), 1029–1037 (2005).
  • Bastian PJ, Palapattu GS, Lin X et al. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin. Cancer Res.11(11), 4037–4043 (2005).
  • Liu ZJ, Maekawa M. Polymerase chain reaction-based methods of DNA methylation analysis. Anal. Biochem.317(2), 259–265 (2003).
  • Licchesi JD, Herman JG. Methylation-specific PCR. Methods Mol. Biol.507, 305–323 (2009).
  • Palmisano WA, Divine KK, Saccomanno G et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res.60(21), 5954–5958 (2000).
  • House MG, Guo M, Iacobuzio-Donahue C, Herman JG. Molecular progression of promoter methylation in intraductal papillary mucinous neoplasms (IPMN) of the pancreas. Carcinogenesis24(2), 193–198 (2003).
  • van Engeland M, Weijenberg MP, Roemen GM et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res.63(12), 3133–3137 (2003).
  • Hegi ME, Diserens AC, Gorlia T et al.MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med.352(10), 997–1003 (2005).
  • Brena RM, Huang TH, Plass C. Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J. Mol. Med.84(5), 365–377 (2006).
  • Zeschnigk M, Bohringer S, Price EA et al. A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus. Nucleic Acids Res.32(16), e125 (2004).
  • Lo YM, Wong IH, Zhang J et al. Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res.59(16), 3899–3903 (1999).
  • McCullagh P, Nelder JA. Generalized Linear Models (2nd Edition). Chapman and Hall, London, UK (1989).
  • Kuppuswamy MN, Hoffmann JW, Kasper CK et al. Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (Factor IX) and cystic fibrosis genes. Proc. Natl Acad. Sci. USA88(4), 1143–1147 (1991).
  • Singer-Sam J, LeBon JM, Dai A, Riggs AD. A sensitive, quantitative assay for measurement of allele-specific transcripts differing by a single nucleotide. PCR Methods Appl.1(3), 160–163 (1992).
  • Szabo PE, Mann JR. Allele-specific expression and total expression levels of imprinted genes during early mouse development: implications for imprinting mechanisms. Genes Dev.9(24), 3097–3108 (1995).
  • Greenwood AD, Burke DT. Single nucleotide primer extension: quantitative range, variability, and multiplex analysis. Genome Res.6(4), 336–348 (1996).
  • Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res.25(12), 2529–2531 (1997).
  • Cottrell SE, Distler J, Goodman NS et al. A real-time PCR assay for DNA-methylation using methylation-specific blockers. Nucleic Acids Res.32(1), e10 (2004).
  • Jahr S, Hentze H, Englisch S et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res.61(4), 1659–1665 (2001).
  • Sozzi G, Conte D, Mariani L et al. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res.61(12), 4675–4678 (2001).
  • Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem.242(1), 84–89 (1996).
  • Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science281(5375), 363–365(1998).
  • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat. Med.10(8), 789–799 (2004).
  • Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res.37(3), 646–650 (1977).
  • Chang HW, Lee SM, Goodman SN et al. Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer. J. Natl Cancer Inst.94(22), 1697–1703 (2002).
  • Wang BG, Huang HY, Chen YC et al. Increased plasma DNA integrity in cancer patients. Cancer Res.63(14), 3966–3968 (2003).
  • Bastian PJ, Yegnasubramanian S, Palapattu GS et al. Molecular biomarker in prostate cancer: the role of CpG island hypermethylation. Eur. Urol.46(6), 698–708 (2004).
  • Nakayama M, Gonzalgo ML, Yegnasubramanian S et al.GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J. Cell. Biochem.91(3), 540–552 (2004).
  • Chuang CK, Chu DC, Tzou RD et al. Hypermethylation of the CpG islands in the promoter region flanking GSTP1 gene is a potential plasma DNA biomarker for detecting prostate carcinoma. Cancer Detect. Prev.31(1), 59–63 (2007).
  • Roupret M, Hupertan V, Catto JW et al. Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int. J. Cancer122(4), 952–956 (2008).
  • Rogers CG, Gonzalgo ML, Yan G et al. High concordance of gene methylation in post-digital rectal examination and post-biopsy urine samples for prostate cancer detection. J. Urol.176(5), 2280–2284 (2006).
  • Tomlins SA, Rubin MA, Chinnaiyan AM. Integrative biology of prostate cancer progression. Annu. Rev. Pathol.1, 243–271 (2006).
  • Bryzgunova OE, Morozkin ES, Yarmoschuk SV, Vlassov VV, Laktionov PP. Methylation-specific sequencing of GSTP1 gene promoter in circulating/extracellular DNA from blood and urine of healthy donors and prostate cancer patients. Ann. NY Acad. Sci.1137, 222–225 (2008).
  • Jemal A, Tiwari RC, Murray T et al. Cancer statistics 2004. CA Cancer J. Clin.54(1), 8–29 (2004).
  • Sylvester JE, Blasko JC, Grimm PD, Meier R, Malmgren JA. Ten-year biochemical relapse-free survival after external beam radiation and brachytherapy for localized prostate cancer: the Seattle experience. Int. J. Radiat. Oncol. Biol. Phys.57(4), 944–952 (2003).
  • Kupelian PA, Elshaikh M, Reddy CA, Zippe C, Klein EA. Comparison of the efficacy of local therapies for localized prostate cancer in the prostate-specific antigen era: a large single-institution experience with radical prostatectomy and external-beam radiotherapy. J. Clin. Oncol.20(16), 3376–3385 (2002).
  • Kuban DA, Thames HD, Levy LB et al. Long-term multi-institutional analysis of stage T1-T2 prostate cancer treated with radiotherapy in the PSA era. Int. J. Radiat. Oncol. Biol. Phys.57(4), 915–928 (2003).
  • Karakiewicz PI, Shariat SF, Palapattu GS et al. Nomogram for predicting disease recurrence after radical cystectomy for transitional cell carcinoma of the bladder. J. Urol.176(4 Pt 1), 1354–1361; discussion: 1361–1352 (2006).
  • Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J. Clin. Oncol.17(5), 1499–1507 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.