1,666
Views
646
CrossRef citations to date
0
Altmetric
Review

Current advances in research and clinical applications of PLGA-based nanotechnology

, , , , , & show all
Pages 325-341 | Published online: 09 Jan 2014

References

  • Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer120(12), 2527–2537 (2007).
  • Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small1(2), 172–179 (2005).
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J.19(3), 311–330 (2005).
  • Thompson M. Nanomedicine – a tremendous research opportunity for analytical chemists. Analyst129, 671 (2004).
  • Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today8(24), 1112–1120 (2003).
  • Wickline SA, Neubauer AM, Winter P, Caruthers S, Lanza G. Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler. Thromb. Vasc. Biol.26(3), 435–441 (2006).
  • Lipinski MJ, Fuster V, Fisher EA, Fayad ZA. Technology insight: targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging. Nat. Clin. Pract. Cardiovasc. Med.1(1), 48–55 (2004).
  • Guccione S, Li KC, Bednarski MD. Vascular-targeted nanoparticles for molecular imaging and therapy. Methods Enzymol.386, 219–236 (2004).
  • Yang X. Nano- and microparticle-based imaging of cardiovascular interventions: overview. Radiology243(2), 340–347 (2007).
  • Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging25(4), 667–680 (2007).
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev.53(2), 283–318 (2001).
  • Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J.9(2), E128–E147 (2007).
  • Patel DN, Bailey SR. Nanotechnology in cardiovascular medicine. Catheter Cardiovasc. Interv.69(5), 643–654 (2007).
  • Hawker CJ, Wooley KL. The convergence of synthetic organic and polymer chemistries. Science309(5738), 1200–1205 (2005).
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev.55(3), 329–347 (2003).
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials21(23), 2475–2490 (2000).
  • Studer M, Briel M, Leimenstoll B, Glass TR, Bucher HC. Effect of different antilipidemic agents and diets on mortality: a systematic review. Arch. Intern. Med.165(7), 725–730 (2005).
  • Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed.17(3), 247–289 (2006).
  • Zambaux MF, Bonneaux F, Gref R et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J. Control Release50(1–3), 31–40 (1998).
  • Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J. Control. Release79(1–3), 123–135 (2002).
  • Avgoustakis K, Beletsi A, Panagi Z et al. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles. Int. J. Pharm.259(1–2), 115–127 (2003).
  • Hyon SH. Biodegradable poly (lactic acid) microspheres for drug delivery systems. Yonsei Med. J.41(6), 720–734 (2000).
  • Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J.16(10), 1217–1226 (2002).
  • Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly(D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control Release82(1), 105–114 (2002).
  • Cheng FY, Wang SP, Su CH et al. Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes. Biomaterials29(13), 2104–2112 (2008).
  • Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials17(2), 93–102 (1996).
  • Kitchell JP, Wise DL. Poly(lactic/glycolic acid) biodegradable drug-polymer matrix systems. Methods Enzymol.112, 436–448 (1985).
  • Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev.28(1), 5–24 (1997).
  • Saxena V, Sadoqi M, Shao J. Polymeric nanoparticulate delivery system for indocyanine green: biodistribution in healthy mice. Int. J. Pharm.308(1–2), 200–204 (2006).
  • Avgoustakis K. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr. Drug Deliv.1(4), 321–333 (2004).
  • van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM. Biodistribution and pharmacokinetic analysis of paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Mol. Pharm.5(4), 516–526 (2008).
  • Igartua M, Hernandez RM, Rosas JE, Patarroyo ME, Pedraz JL. γ-irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. Eur. J. Pharm. Biopharm.69(2), 519–526 (2008).
  • Shearer H, Ellis MJ, Perera SP, Chaudhuri JB. Effects of common sterilization methods on the structure and properties of poly(D,L- lactic-co-glycolic acid) scaffolds. Tissue Eng.12(10), 2717–2727 (2006).
  • Jain R, Shah NH, Malick AW, Rhodes CT. Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev. Ind. Pharm.24(8), 703–727 (1998).
  • Prasad S, Cody V, Hanlon D et al. Biopolymer nanoparticles as antigen delivery vehicles for immunotherapy of head and neck squamous cell carcinoma (HNSCC). Clin. Otolaryngol.33(3), 304 (2008).
  • Prabha S, Labhasetwar V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm. Res.21(2), 354–364 (2004).
  • Panyam J, Dali MM, Sahoo SK et al. Polymer degradation and in vitro release of a model protein from poly(,-lactide-co-glycolide) nano- and microparticles. J. Control Release92(1–2), 173–187 (2003).
  • Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(,-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res.20(2), 212–220 (2003).
  • van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res.17(10), 1159–1167 (2000).
  • Vinagradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Del. Rev., 54, 223–233 (2002).
  • Franco OH, Bonneux L, de Laet C, Peeters A, Steyerberg EW, Mackenbach JP. The Polymeal: a more natural, safer, and probably tastier (than the Polypill) strategy to reduce cardiovascular disease by more than 75%. BMJ329(7480), 1447–1450 (2004).
  • Vorp DA, Maul T, Nieponice A. Molecular aspects of vascular tissue engineering. Front. Biosci.10, 768–789 (2005).
  • Tu JV, Pashos CL, Naylor CD et al. Use of cardiac procedures and outcomes in elderly patients with myocardial infarction in the United States and Canada. N. Engl. J. Med.336(21), 1500–1505 (1997).
  • McKee JA, Banik SS, Boyer MJ et al. Human arteries engineered in vitro. EMBO Rep.4(6), 633–638 (2003).
  • Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM. Current status of prosthetic bypass grafts: a review. J. Biomed. Mater. Res. B Appl. Biomater.74(1), 570–581 (2005).
  • Salacinski HJ, Goldner S, Giudiceandrea A et al. The mechanical behavior of vascular grafts: a review. J. Biomater. Appl.15(3), 241–278 (2001).
  • Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J. Vasc. Surg.41(2), 349–354 (2005).
  • Hoenig MR, Campbell GR, Rolfe BE, Campbell JH. Tissue-engineered blood vessels: alternative to autologous grafts? Arterioscler. Thromb. Vasc. Biol.25(6), 1128–1134 (2005).
  • Wang X, Lin P, Yao Q, Chen C. Development of small-diameter vascular grafts. World J. Surg.31(4), 682–689 (2007).
  • Thompson RW. Reflections on the pathogenesis of abdominal aortic aneurysms. Cardiovasc. Surg.10(4), 389–394 (2002).
  • Niklason LE. Techview: medical technology. Replacement arteries made to order. Science286(5444), 1493–1494 (1999).
  • Niklason LE, Gao J, Abbott WM et al. Functional arteries grown in vitro. Science284(5413), 489–493 (1999).
  • Sarkar S, Lee GY, Wong JY, Desai TA. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials27(27), 4775–4782 (2006).
  • Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng.7(6), 679–689 (2001).
  • Hwang CM, Khademhosseini A, Park Y, Sun K, Lee SH. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir24(13), 6845–6851 (2008).
  • Robb BW, Wachi H, Schaub T, Mecham RP, Davis EC. Characterization of an in vitro model of elastic fiber assembly. Mol. Biol. Cell10(11), 3595–3605 (1999).
  • Lee BH, Nam HY, Kwon T et al. Paclitaxel-coated expanded polytetrafluoroethylene haemodialysis grafts inhibit neointimal hyperplasia in porcine model of graft stenosis. Nephrol. Dial. Transplant.21(9), 2432–2438 (2006).
  • Lim HJ, Nam HY, Lee BH, Kim DJ, Ko JY, Park JS. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Biotechnol. Prog.23(3), 693–697 (2007).
  • Klinkert P, Post PN, Breslau PJ, van Bockel JH. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur. J. Vasc. Endovasc. Surg.27(4), 357–362 (2004).
  • Shirota T, He H, Yasui H, Matsuda T. Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng.9(1), 127–136 (2003).
  • Cho SW, Lim SH, Kim IK et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg.241(3), 506–515 (2005).
  • Simper D, Stalboerger PG, Panetta CJ, Wang S, Caplice NM. Smooth muscle progenitor cells in human blood. Circulation106(10), 1199–1204 (2002).
  • Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int. J. Pharm.233(1–2), 51–59 (2002).
  • Iverson N, Plourde N, Chnari E, Nackman GB, Moghe PV. Convergence of nanotechnology and cardiovascular medicine : progress and emerging prospects. BioDrugs22(1), 1–10 (2008).
  • Cui W, Bei J, Wang S et al. Preparation and evaluation of poly(-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography. J. Biomed. Mater. Res. B Appl. Biomater.73(1), 171–178 (2005).
  • Wheatley MA, Forsberg F, Oum K, Ro R, El-Sherif D. Comparison of in vitro and in vivo acoustic response of a novel 50:50 PLGA contrast agent. Ultrasonics44(4), 360–367 (2006).
  • Lathia JD, Leodore L, Wheatley MA. Polymeric contrast agent with targeting potential. Ultrasonics42(1–9), 763–768 (2004).
  • Bauters C, Banos JL, Van Belle E, McFadden EP, Lablanche JM, Bertrand ME. Six-month angiographic outcome after successful repeat percutaneous intervention for in-stent restenosis. Circulation97(4), 318–321 (1998).
  • Ganaha F, Kao EY, Wong H et al. Stent-based controlled release of intravascular angiostatin to limit plaque progression and in-stent restenosis. J. Vasc. Interv. Radiol.15(6), 601–608 (2004).
  • Reimers B, Moussa I, Akiyama T et al. Long-term clinical follow-up after successful repeat percutaneous intervention for stent restenosis. J. Am. Coll. Cardiol.30(1), 186–192 (1997).
  • Klugherz BD, Jones PL, Cui X et al. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat. Biotechnol.18(11), 1181–1184 (2000).
  • Perlstein I, Connolly JM, Cui X et al. DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Ther.10(17), 1420–1428 (2003).
  • Banai S, Gertz SD, Gavish L et al. Tyrphostin AGL-2043 eluting stent reduces neointima formation in porcine coronary arteries. Cardiovasc. Res.64(1), 165–171 (2004).
  • Yang Z, Birkenhauer P, Julmy F et al. Sustained release of heparin from polymeric particles for inhibition of human vascular smooth muscle cell proliferation. J. Control. Release60(2–3), 269–277 (1999).
  • Schwartz SM, deBlois D, O’Brien ER. The intima. Soil for atherosclerosis and restenosis. Circ. Res.77(3), 445–465 (1995).
  • Guzman LA, Labhasetwar V, Song C et al. Local intraluminal infusion of biodegradable polymeric nanoparticles. A novel approach for prolonged drug delivery after balloon angioplasty. Circulation94(6), 1441–1448 (1996).
  • Suh H, Jeong B, Rathi R, Kim SW. Regulation of smooth muscle cell proliferation using paclitaxel-loaded poly(ethylene oxide)-poly(lactide/glycolide) nanospheres. J. Biomed. Mater. Res.42(2), 331–338 (1998).
  • Zhu W, Masaki T, Bae YH, Rathi R, Cheung AK, Kern SE. Development of a sustained-release system for perivascular delivery of dipyridamole. J. Biomed. Mater. Res. B Appl. Biomater.77(1), 135–143 (2006).
  • Cleek RL, Rege AA, Denner LA, Eskin SG, Mikos AG. Inhibition of smooth muscle cell growth in vitro by an antisense oligodeoxynucleotide released from poly(-lactic-co-glycolic acid) microparticles. J. Biomed. Mater. Res.35(4), 525–530 (1997).
  • Mei L, Sun H, Jin X et al. Modified paclitaxel-loaded nanoparticles for inhibition of hyperplasia in a rabbit arterial balloon injury model. Pharm. Res.24(5), 955–962 (2007).
  • Westedt U, Kalinowski M, Wittmar M et al. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J. Control Release119(1), 41–51 (2007).
  • Cohen-Sacks H, Najajreh Y, Tchaikovski V et al. Novel PDGFβR antisense encapsulated in polymeric nanospheres for the treatment of restenosis. Gene Ther.9(23), 1607–1616 (2002).
  • Kaul S, Cercek B, Rengstrom J et al. Polymeric-based perivascular delivery of a nitric oxide donor inhibits intimal thickening after balloon denudation arterial injury: role of nuclear factor-κB. J. Am. Coll. Cardiol.35(2), 493–501 (2000).
  • Lavisse S, Paci A, Rouffiac V et al.In vitro echogenicity characterization of poly[lactide-coglycolide] (PLGA) microparticles and preliminary in vivo ultrasound enhancement study for ultrasound contrast agent application. Invest. Radiol.40(8), 536–544 (2005).
  • Goldberg SN, Walovitch RC, Straub JA, Shore MT, Gazelle GS. Radio-frequency-induced coagulation necrosis in rabbits: immediate detection at US with a synthetic microsphere contrast agent. Radiology213(2), 438–444 (1999).
  • Forsberg F, Lathia JD, Merton DA et al. Effect of shell type on the in vivo backscatter from polymer-encapsulated microbubbles. Ultrasound Med. Biol.30(10), 1281–1287 (2004).
  • Mo Y, Lim LY. Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J. Control. Release108(2–3), 244–262 (2005).
  • Fonseca C, Simoes S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release83(2), 273–286 (2002).
  • Zeisser-Labouebe M, Lange N, Gurny R, Delie F. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int. J. Pharm.326(1–2), 174–181 (2006).
  • Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur. J. Pharm. Biopharm.67(1), 1–8 (2007).
  • Yemisci M, Bozdag S, Cetin M et al. Treatment of malignant gliomas with mitoxantrone-loaded poly (lactide-co-glycolide) microspheres. Neurosurgery59(6), 1296–1302; discussion 1302–1303 (2006).
  • Pai Kasturi S, Qin H, Thomson KS et al. Prophylactic anti-tumor effects in a B cell lymphoma model with DNA vaccines delivered on polyethylenimine (PEI) functionalized PLGA microparticles. J. Control. Release113(3), 261–270 (2006).
  • Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J. Control. Release120(1–2), 18–26 (2007).
  • Benny O, Duvshani-Eshet M, Cargioli T et al. Continuous delivery of endogenous inhibitors from poly(lactic-co-glycolic acid) polymeric microspheres inhibits glioma tumor growth. Clin. Cancer Res.11(2 Pt 1), 768–776 (2005).
  • Lagarce F, Garcion E, Faisant N et al. Development and characterization of interleukin-18-loaded biodegradable microspheres. Int. J. Pharm.314(2), 179–188 (2006).
  • Bharali DJ, Mousa SA, Thanavala Y. Micro- and nanoparticle-based vaccines for hepatitis B. Adv. Exp. Med. Biol.601, 415–421 (2007).
  • Zhao Z, Leong KW. Controlled delivery of antigens and adjuvants in vaccine development. J. Pharm. Sci.85(12), 1261–1270 (1996).
  • Mok H, Park TG. Direct plasmid DNA encapsulation within PLGA nanospheres by single oil-in-water emulsion method. Eur. J. Pharm. Biopharm.68(1), 105–111 (2008).
  • Denis-Mize KS, Dupuis M, Singh M et al. Mechanisms of increased immunogenicity for DNA-based vaccines adsorbed onto cationic microparticles. Cell. Immunol.225(1), 12–20 (2003).
  • Peyre M, Sesardic D, Merkle HP, Gander B, Johansen P. An experimental divalent vaccine based on biodegradable microspheres induces protective immunity against tetanus and diphtheria. J. Pharm. Sci.92(5), 957–966 (2003).
  • Smith DJ, Trantolo DJ, King WF et al. Induction of secretory immunity with bioadhesive poly (,-lactide-co-glycolide) microparticles containing Streptococcus sobrinus glucosyltransferase. Oral Microbiol. Immunol.15(2), 124–130 (2000).
  • Nayak B, Panda AK, Ray P, Ray AR. Formulation, characterization and evaluation of rotavirus encapsulated PLA and PLGA particles for oral vaccination. J. Microencapsul.1–12 (2008).
  • Audran R, Peter K, Dannull J et al. Encapsulation of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and macrophages in vitro. Vaccine21(11–12), 1250–1255 (2003).
  • Waeckerle-Men Y, Allmen EU, Gander B et al. Encapsulation of proteins and peptides into biodegradable poly(,-lactide-co-glycolide) microspheres prolongs and enhances antigen presentation by human dendritic cells. Vaccine24(11), 1847–1857 (2006).
  • Waeckerle-Men Y, Scandella E, Uetz-Von Allmen E et al. Phenotype and functional analysis of human monocyte-derived dendritic cells loaded with biodegradable poly(lactide-co-glycolide) microspheres for immunotherapy. J. Immunol. Methods287(1–2), 109–124 (2004).
  • Cheng J, Teply BA, Sherifi I et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials28(5), 869–876 (2007).
  • Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: role of physicochemical properties of particulate carriers – liposomes and microspheres – on the phagocytosis by macrophages. J. Control. Release79(1–3), 29–40 (2002).
  • Hamdy S, Haddadi A, Somayaji V, Ruan D, Samuel J. Pharmaceutical analysis of synthetic lipid A-based vaccine adjuvants in poly (,-lactic-co-glycolic acid) nanoparticle formulations. J. Pharm. Biomed. Anal.44(4), 914–923 (2007).
  • Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(,-lactic-co-glycolic acid) nanoparticles. J. Biomed. Mater. Res. A, 81(3), 652–662 (2007).
  • Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J. Immunother.30(4), 378–395 (2007).
  • Wischke C, Zimmermann J, Wessinger B et al. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int. J. Pharm.365(1-2), 61–68 (2008).
  • Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine19(15–16), 1940–1950 (2001).
  • Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J. Drug Target15(10), 701–713 (2007).
  • Garinot M, Fievez V, Pourcelle V et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J. Control Release120(3), 195–204 (2007).
  • Wendorf J, Chesko J, Kazzaz J et al. A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum. Vaccin.4(1), 44–49 (2008).
  • Boehm G, Peyre M, Sesardic D et al. On technological and immunological benefits of multivalent single-injection microsphere vaccines. Pharm. Res.19(9), 1330–1336 (2002).
  • Spiers ID, Alpar HO, Eyles JE, Bozkir A, Miller J, Williamson ED. Studies on the co-encapsulation, release and integrity of two subunit antigens: rV and rF1 from Yersinia pestis. J. Pharm. Pharmacol.51(9), 991–997 (1999).
  • Eyles JE, Williamson ED, Spiers ID, Stagg AJ, Jones SM, Alpar HO. Generation of protective immune responses to plague by mucosal administration of microsphere coencapsulated recombinant subunits. J. Control. Release63(1–2), 191–200 (2000).
  • Eyles JE, Williamson ED, Spiers ID, Alpar HO. Protection studies following bronchopulmonary and intramuscular immunisation with yersinia pestis F1 and V subunit vaccines coencapsulated in biodegradable microspheres: a comparison of efficacy. Vaccine18(28), 3266–3271 (2000).
  • Heit A, Schmitz F, Haas T, Busch DH, Wagner H. Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur. J. Immunol.37(8), 2063–2074 (2007).
  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(,-lactide-co-glycolide) and its derivatives. J. Control. Release125(3), 193–209 (2008).
  • Ribeiro S, Rijpkema SG, Durrani Z, Florence AT. PLGA-dendron nanoparticles enhance immunogenicity but not lethal antibody production of a DNA vaccine against anthrax in mice. Int. J. Pharm.331(2), 228–232 (2007).
  • Cui FD, Tao AJ, Cun DM, Zhang LQ, Shi K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J. Pharm. Sci.96(2), 421–427 (2007).
  • Liu J, Zhang SM, Chen PP et al. Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J. Mater. Sci. Mater. Med.18(11), 2205–2210 (2007).
  • Kumar PS, Ramakrishna S, Saini TR, Diwan PV. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Pharmazie61(7), 613–617 (2006).
  • Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J. Control. Release114(2), 242–250 (2006).
  • Basarkar A, Singh J. Poly (lactide-co-glycolide)-polymethacrylate nanoparticles for intramuscular delivery of plasmid encoding interleukin-10 to prevent autoimmune diabetes in mice. Pharm. Res.26(1), 72–81 (2008).
  • Tosi G, Costantino L, Rivasi F et al. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with loperamide and rhodamine-123. J. Control. Release122(1), 1–9 (2007).
  • Klose D, Laprais M, Leroux V et al. Fenofibrate-loaded PLGA microparticles: effects on ischemic stroke. Eur J. Pharm. Sci.37(1), 43–52 (2009).
  • Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx2(1), 108–119 (2005).
  • Tamura T, Kita T, Nakagawa T et al. Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope115(11), 2000–2005 (2005).
  • Higaki M, Ishihara T, Izumo N, Takatsu M, Mizushima Y. Treatment of experimental arthritis with poly(D,L-lactic/glycolic acid) nanoparticles encapsulating β methasone sodium phosphate. Ann. Rheum. Dis.64(8), 1132–1136 (2005).
  • Kim WU, Lee WK, Ryoo JW et al. Suppression of collagen-induced arthritis by single administration of poly(lactic-co-glycolic acid) nanoparticles entrapping type II collagen: a novel treatment strategy for induction of oral tolerance. Arthritis Rheum.46(4), 1109–1120 (2002).
  • Lamprecht A, Ubrich N, Yamamoto H et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther.299(2), 775–781 (2001).
  • Feng SS, Zeng W, Teng Lim Y et al. Vitamin E TPGS-emulsified poly(lactic-co-glycolic acid) nanoparticles for cardiovascular restenosis treatment. Nanomedicine2(3), 333–344 (2007).
  • Nehilla BJ, Bergkvist M, Popat KC, Desai TA. Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. Int. J. Pharm.348(1–2), 107–114 (2008).
  • Reddy MK, Wu L, Kou W, Ghorpade A, Labhasetwar V. Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Appl. Biochem. Biotechnol.151(2–3), 565–577 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.