121
Views
10
CrossRef citations to date
0
Altmetric
Review

Molecular diagnosis of myeloproliferative neoplasms

&
Pages 481-492 | Published online: 09 Jan 2014

References

  • Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature243(5405), 290–293 (1973).
  • Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph translocation. Nature315(6022), 758–761 (1985).
  • Stam K, Heisterkamp N, Grosveld G et al. Evidence of a new chimeric BCR/c-ABL mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. N. Engl. J. Med.313(23), 1429–1433 (1985).
  • Bernards A, Rubin CM, Westbrook CA, Paskind M, Baltimore D. The first intron in the human c-abl gene is at least 200 kilobases long and is a target for translocations in chronic myelogenous leukemia. Mol. Cell Biol.7(9), 3231–3236 (1987).
  • Melo JV. BCR-ABL gene variants. Baillieres Clin. Haematol.10(2), 203–222 (1997).
  • Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell36(1), 93–99 (1984).
  • Karlic H, Grill R, Schlogl E. Minor BCR (m-bcr) rearrangements may appear in major BCR (M-bcr)-positive CML cases. Hematol. Pathol.6(4), 203–207 (1992).
  • Saglio G, Guerrasio A, Rosso C et al. New type of Bcr/Abl junction in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood76(9), 1819–1824 (1990).
  • Andreasson P, Johansson B, Carlsson M et al. BCR/ABL-negative chronic myeloid leukemia with ETV6/ABL fusion. Genes Chromosomes Cancer20(3), 299–304 (1997).
  • Barbouti A, Ahlgren T, Johansson B et al. Clinical and genetic studies of ETV6/ABL1-positive chronic myeloid leukaemia in blast crisis treated with imatinib mesylate. Br. J. Haematol.122(1), 85–93 (2003).
  • Baccarani M, Saglio G, Goldman J et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood108(6), 1809–1820 (2006).
  • Marktel S, Marin D, Foot N et al. Chronic myeloid leukemia in chronic phase responding to imatinib: the occurrence of additional cytogenetic abnormalities predicts disease progression. Haematologica88(3), 260–267 (2003).
  • Kantarjian HM, Smith TL, McCredie KB et al. Chronic myelogenous leukemia: a multivariate analysis of the associations of patient characteristics and therapy with survival. Blood66(6), 1326–1335 (1985).
  • O’Dwyer ME, Mauro MJ, Blasdel C et al. Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate. Blood103(2), 451–455 (2004).
  • Chase A, Huntly BJ, Cross NC. Cytogenetics of chronic myeloid leukaemia. Best Pract. Res. Clin. Haematol.14(3), 553–571 (2001).
  • Landstrom AP, Tefferi A. Fluorescent in situ hybridization in the diagnosis, prognosis, and treatment monitoring of chronic myeloid leukemia. Leuk. Lymphoma47(3), 397–402 (2006).
  • Dewald GW, Schad CR, Christensen ER et al. The application of fluorescent in situ hybridization to detect Mbcr/abl fusion in variant Ph chromosomes in CML and ALL. Cancer Genet. Cytogenet.71(1), 7–14 (1993).
  • Chase A, Grand F, Zhang JG, Blackett N, Goldman J, Gordon M. Factors influencing the false positive and negative rates of BCR-ABL fluorescence in situ hybridization. Genes Chromosomes Cancer18(4), 246–253 (1997).
  • Sinclair PB, Green AR, Grace C, Nacheva EP. Improved sensitivity of BCR-ABL detection: a triple-probe three-color fluorescence in situ hybridization system. Blood90(4), 1395–1402 (1997).
  • Huntly BJ, Guilhot F, Reid AG et al. Imatinib improves but may not fully reverse the poor prognosis of patients with CML with derivative chromosome 9 deletions. Blood102(6), 2205–2212 (2003).
  • Sinclair PB, Nacheva EP, Leversha M et al. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood95(3), 738–743 (2000).
  • Yoong Y, VanDeWalker TJ, Carlson RO, Dewald GW, Tefferi A. Clinical correlates of submicroscopic deletions involving the ABL-BCR translocation region in chronic myeloid leukemia. Eur. J. Haematol.74(2), 124–127 (2005).
  • Branford S, Hughes T. Diagnosis and monitoring of chronic myeloid leukemia by qualitative and quantitative RT-PCR. Methods Mol. Med.125, 69–92 (2006).
  • Hughes T, Branford S. Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia. Blood Rev.20(1), 29–41 (2006).
  • Rozman C, Urbano-Ispizua A, Cervantes F et al. Analysis of the clinical relevance of the breakpoint location within M-BCR and the type of chimeric mRNA in chronic myelogenous leukemia. Leukemia9(6), 1104–1107 (1995).
  • Branford S, Hughes TP, Rudzki Z. Dual transcription of b2a2 and b3a2 BCR–ABL transcripts in chronic myeloid leukaemia is confined to patients with a linked polymorphism within the BCR gene. Br. J. Haematol.117(4), 875–877 (2002).
  • Ravandi F, Cortes J, Albitar M et al. Chronic myelogenous leukaemia with p185(BCR/ABL) expression: characteristics and clinical significance. Br. J. Haematol.107(3), 581–586 (1999).
  • Pane F, Intrieri M, Quintarelli C, Izzo B, Muccioli GC, Salvatore F. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Oncogene21(56), 8652–8667 (2002).
  • Verstovsek S, Lin H, Kantarjian H et al. Neutrophilic-chronic myeloid leukemia: low levels of p230 BCR/ABL mRNA and undetectable BCR/ABL protein may predict an indolent course. Cancer94(9), 2416–2425 (2002).
  • Beillard E, Pallisgaard N, van der Velden VH et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia17(12), 2474–2486 (2003).
  • Hughes TP, Kaeda J, Branford S et al. Frequency of major molecular responses to imatinib or interferon α plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med.349(15), 1423–1432 (2003).
  • Branford S, Seymour JF, Grigg A et al. BCR-ABL messenger RNA levels continue to decline in patients with chronic phase chronic myeloid leukemia treated with imatinib for more than 5 years and approximately half of all first-line treated patients have stable undetectable BCR–ABL using strict sensitivity criteria. Clin. Cancer Res.13(23), 7080–7085 (2007).
  • Branford S, Fletcher L, Cross NC et al. Desirable performance characteristics for BCR–ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood112(8), 3330–3338 (2008).
  • Branford S, Rudzki Z, Parkinson I et al. Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR–ABL kinase domain mutations. Blood104(9), 2926–2932 (2004).
  • Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol.8(11), 1018–1029 (2007).
  • Branford S, Rudzki Z, Walsh S et al. Detection of BCR–ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood102(1), 276–283 (2003).
  • Soverini S, Martinelli G, Rosti G et al. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J. Clin. Oncol.23(18), 4100–4109 (2005).
  • Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood100(3), 1014–1018 (2002).
  • Nicolini FE, Hayette S, Corm S et al. Clinical outcome of 27 imatinib mesylate-resistant chronic myelogenous leukemia patients harboring a T315I BCR–ABL mutation. Haematologica92(9), 1238–1241 (2007).
  • Druker BJ, Guilhot F, O’Brien SG et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med.355(23), 2408–2417 (2006).
  • Baxter EJ, Scott LM, Campbell PJ et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet365(9464), 1054–1061 (2005).
  • James C, Ugo V, Le Couedic JP et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature434(7037), 1144–1148 (2005).
  • Kralovics R, Passamonti F, Buser AS et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med.352(17), 1779–1790 (2005).
  • Levine RL, Wadleigh M, Cools J et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell7(4), 387–397 (2005).
  • Rane SG, Reddy EP. JAKs, STATs and Src kinases in hematopoiesis. Oncogene21(21), 3334–3358 (2002).
  • Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J. Biol. Chem.277(49), 47954–47963 (2002).
  • Benekli M, Baer MR, Baumann H, Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood101(8), 2940–2954 (2003).
  • Verstovsek S, Silver RT, Cross NC, Tefferi A. JAK2V617F mutational frequency in polycythemia vera: 100%, >90%, less? Leukemia20(11), 2067 (2006).
  • Vizmanos JL, Ormazabal C, Larrayoz MJ, Cross NC, Calasanz MJ. JAK2 V617F mutation in classic chronic myeloproliferative diseases: a report on a series of 349 patients. Leukemia20(3), 534–535 (2006).
  • Steensma DP, McClure RF, Karp JE et al. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia20(6), 971–978 (2006).
  • Lee JW, Soung YH, Kim SY et al. JAK2 V617F mutation is uncommon in non-Hodgkin lymphomas. Leuk. Lymphoma47(2), 313–314 (2006).
  • Melzner I, Weniger MA, Menz CK, Moller P. Absence of the JAK2 V617F activating mutation in classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma. Leukemia20(1), 157–158 (2006).
  • Tefferi A, Sirhan S, Lasho TL et al. Concomitant neutrophil JAK2 mutation screening and PRV-1 expression analysis in myeloproliferative disorders and secondary polycythaemia. Br. J. Haematol.131(2), 166–171 (2005).
  • Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood108(5), 1652–1660 (2006).
  • Shide K, Shimoda HK, Kumano T et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia22(1), 87–95 (2008).
  • Vannucchi AM, Antonioli E, Guglielmelli P et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood110(3), 840–846 (2007).
  • Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood108(7), 2435–2437 (2006).
  • Vannucchi AM, Pancrazzi A, Bogani C, Antonioli E, Guglielmelli P. A quantitative assay for JAK2 (V617F) mutation in myeloproliferative disorders by ARMS-PCR and capillary electrophoresis. Leukemia20(6), 1055–1060 (2006).
  • McClure R, Mai M, Lasho T. Validation of two clinically useful assays for evaluation of JAK2 V617F mutation in chronic myeloproliferative disorders. Leukemia20(1), 168–171 (2006).
  • Jones AV, Kreil S, Zoi K et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood106(6), 2162–2168 (2005).
  • Kroger N, Badbaran A, Holler E et al. Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood109(3), 1316–1321 (2007).
  • Scott LM, Tong W, Levine RL et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med.356(5), 459–468 (2007).
  • Percy MJ, Scott LM, Erber WN et al. The frequency of JAK2 exon 12 mutations in idiopathic erythrocytosis patients with low serum erythropoietin levels. Haematologica92(12), 1607–1614 (2007).
  • Pietra D, Li S, Brisci A et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood111(3), 1686–1689 (2008).
  • Jones AV, Cross NC, White HE, Green AR, Scott LM. Rapid identification of JAK2 exon 12 mutations using high resolution melting analysis. Haematologica93(10), 1560–1564 (2008).
  • Foster DC, Sprecher CA, Grant FJ et al. Human thrombopoietin: gene structure, cDNA sequence, expression, and chromosomal localization. Proc. Natl Acad. Sci. USA91(26), 13023–13027 (1994).
  • Pikman Y, Lee BH, Mercher T et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med.3(7), e270 (2006).
  • Schnittger S, Bacher U, Haferlach C et al. Characterization of 35 new cases with four different MPLW515 mutations and essential thrombocytosis or primary myelofibrosis. Haematologica94(1), 141–144 (2009).
  • Pardanani AD, Levine RL, Lasho T et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood108(10), 3472–3476 (2006).
  • Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood107(11), 4274–4281 (2006).
  • Lasho TL, Pardanani A, McClure RF et al. Concurrent MPL515 and JAK2V617F mutations in myelofibrosis: chronology of clonal emergence and changes in mutant allele burden over time. Br. J. Haematol.135(5), 683–687 (2006).
  • Cools J, DeAngelo DJ, Gotlib J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med.348(13), 1201–1214 (2003).
  • Klion AD, Robyn J, Akin C et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood103(2), 473–478 (2004).
  • Pardanani A, Elliott M, Reeder T et al. Imatinib for systemic mast-cell disease. Lancet362(9383), 535–536 (2003).
  • Score J, Curtis C, Waghorn K et al. Identification of a novel imatinib responsive KIF5B-PDGFRA fusion gene following screening for PDGFRA overexpression in patients with hypereosinophilia. Leukemia20(5), 827–832 (2006).
  • Baxter EJ, Hochhaus A, Bolufer P et al. The t(4;22)(q12;q11) in atypical chronic myeloid leukaemia fuses BCR to PDGFRA. Hum. Mol. Genet.11(12), 1391–1397 (2002).
  • Walz C, Curtis C, Schnittger S et al. Transient response to imatinib in a chronic eosinophilic leukemia associated with ins(9;4)(q33;q12q25) and a CDK5RAP2–PDGFRA fusion gene. Genes Chromosomes Cancer45(10), 950–956 (2006).
  • Vandenberghe P, Wlodarska I, Michaux L et al. Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia18(4), 734–742 (2004).
  • Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell77(2), 307–316 (1994).
  • Carroll M, Tomasson MH, Barker GF, Golub TR, Gilliland DG. The TEL/platelet-derived growth factor β receptor (PDGF β R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF β R kinase-dependent signaling pathways. Proc. Natl Acad. Sci. USA93(25), 14845–14850 (1996).
  • Abe A, Emi N, Tanimoto M, Terasaki H, Marunouchi T, Saito H. Fusion of the platelet-derived growth factor receptor β to a novel gene CEV14 in acute myelogenous leukemia after clonal evolution. Blood90(11), 4271–4277 (1997).
  • Levine RL, Wadleigh M, Sternberg DW et al.KIAA1509 is a novel PDGFRB fusion partner in imatinib-responsive myeloproliferative disease associated with a t(5;14)(q33;q32). Leukemia19(1), 27–30 (2005).
  • Vizmanos JL, Novo FJ, Roman JP et al.NIN, a gene encoding a CEP110-like centrosomal protein, is fused to PDGFRB in a patient with a t(5;14)(q33;q24) and an imatinib-responsive myeloproliferative disorder. Cancer Res.64(8), 2673–2676 (2004).
  • Morerio C, Acquila M, Rosanda C et al.HCMOGT-1 is a novel fusion partner to PDGFRB in juvenile myelomonocytic leukemia with t(5;17)(q33;p11.2). Cancer Res.64(8), 2649–2651 (2004).
  • Wilkinson K, Velloso ER, Lopes LF et al. Cloning of the t(1;5)(q23;q33) in a myeloproliferative disorder associated with eosinophilia: involvement of PDGFRB and response to imatinib. Blood102(12), 4187–4190 (2003).
  • Magnusson MK, Meade KE, Brown KE et al. Rabaptin-5 is a novel fusion partner to platelet-derived growth factor β receptor in chronic myelomonocytic leukemia. Blood98(8), 2518–2525 (2001).
  • Ross TS, Bernard OA, Berger R, Gilliland DG. Fusion of Huntingtin interacting protein 1 to platelet-derived growth factor β receptor (PDGFβR) in chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood91(12), 4419–4426 (1998).
  • Schwaller J, Anastasiadou E, Cain D et al. H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor β gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood97(12), 3910–3918 (2001).
  • Grand FH, Burgstaller S, Kuhr T et al. p53-Binding protein 1 is fused to the platelet-derived growth factor receptor β in a patient with a t(5;15)(q33;q22) and an imatinib-responsive eosinophilic myeloproliferative disorder. Cancer Res.64(20), 7216–7219 (2004).
  • Xiao S, Nalabolu SR, Aster JC et al.FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome. Nat. Genet.18(1), 84–87 (1998).
  • Smedley D, Hamoudi R, Clark J et al. The t(8;13)(p11;q11–12) rearrangement associated with an atypical myeloproliferative disorder fuses the fibroblast growth factor receptor 1 gene to a novel gene RAMP. Hum. Mol. Genet.7(4), 637–642 (1998).
  • Popovici C, Adelaide J, Ollendorff V et al. Fibroblast growth factor receptor 1 is fused to FIM in stem-cell myeloproliferative disorder with t(8;13). Proc. Natl Acad. Sci. USA95(10), 5712–5717 (1998).
  • Still IH, Chernova O, Hurd D, Stone RM, Cowell JK. Molecular characterization of the t(8;13)(p11;q12) translocation associated with an atypical myeloproliferative disorder: evidence for three discrete loci involved in myeloid leukemias on 8p11. Blood90(8), 3136–3141 (1997).
  • Reiter A, Sohal J, Kulkarni S et al. Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome. Blood92(5), 1735–1742 (1998).
  • Chaffanet M, Popovici C, Leroux D et al. t(6;8), t(8;9) and t(8;13) translocations associated with stem cell myeloproliferative disorders have close or identical breakpoints in chromosome region 8p11–12. Oncogene16(7), 945–949 (1998).
  • Popovici C, Zhang B, Gregoire MJ et al. The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to fibroblast growth factor receptor 1. Blood93(4), 1381–1389 (1999).
  • Mugneret F, Chaffanet M, Maynadie M et al. The 8p12 myeloproliferative disorder. t(8;19)(p12;q13.3): a novel translocation involving the FGFR1 gene. Br. J. Haematol.111(2), 647–649 (2000).
  • Sohal J, Chase A, Mould S et al. Identification of four new translocations involving FGFR1 in myeloid disorders. Genes Chromosomes Cancer32(2), 155–163 (2001).
  • Demiroglu A, Steer EJ, Heath C et al. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood98(13), 3778–3783 (2001).
  • Fioretos T, Panagopoulos I, Lassen C et al. Fusion of the BCR and the fibroblast growth factor receptor-1 (FGFR1) genes as a result of t(8;22)(p11;q11) in a myeloproliferative disorder: the first fusion gene involving BCR but not ABL. Genes Chromosomes Cancer32(4), 302–310 (2001).
  • Guasch G, Popovici C, Mugneret F et al. Endogenous retroviral sequence is fused to FGFR1 kinase in the 8p12 stem-cell myeloproliferative disorder with t(8;19)(p12;q13.3). Blood101(1), 286–288 (2003).
  • Pini M, Gottardi E, Scaravaglio P et al. A fourth case of BCR-FGFR1 positive CML-like disease with t(8;22) translocation showing an extensive deletion on the derivative chromosome 8p. Hematol. J.3(6), 315–316 (2002).
  • Grand EK, Grand FH, Chase AJ et al. Identification of a novel gene, FGFR1OP2, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer40(1), 78–83 (2004).
  • Belloni E, Trubia M, Gasparini P et al. 8p11 myeloproliferative syndrome with a novel t(7;8) translocation leading to fusion of the FGFR1 and TIF1 genes. Genes Chromosomes Cancer42(3), 320–325 (2005).
  • Hidalgo-Curtis C, Chase A, Drachenberg M et al. The t(1;9)(p34;q34) and t(8;12)(p11;q15) fuse pre-mRNA processing proteins SFPQ (PSF) and CPSF6 to ABL and FGFR1. Genes Chromosomes Cancer47(5), 379–385 (2008).
  • Ollendorff V, Guasch G, Isnardon D, Galindo R, Birnbaum D, Pebusque MJ. Characterization of FIM-FGFR1, the fusion product of the myeloproliferative disorder-associated t(8;13) translocation. J. Biol. Chem.274(38), 26922–26930 (1999).
  • Guasch G, Ollendorff V, Borg JP, Birnbaum D, Pebusque MJ. 8p12 stem cell myeloproliferative disorder: the FOP-fibroblast growth factor receptor 1 fusion protein of the t(6;8) translocation induces cell survival mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt/mTOR pathways. Mol. Cell Biol.21(23), 8129–8142 (2001).
  • Roumiantsev S, Krause DS, Neumann CA et al. Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198–FGFR1 and BCR–FGFR1 fusion genes from 8p11 translocations. Cancer Cell5(3), 287–298 (2004).
  • Guasch G, Delaval B, Arnoulet C et al. FOP-FGFR1 tyrosine kinase, the product of a t(6;8) translocation, induces a fatal myeloproliferative disease in mice. Blood103(1), 309–312 (2004).
  • Garcia-Montero AC, Jara-Acevedo M, Teodosio C et al.KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood108(7), 2366–2372 (2006).
  • Schwartz LB, Metcalfe DD, Miller JS, Earl H, Sullivan T. Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N. Engl. J. Med.316(26), 1622–1626 (1987).
  • Escribano L, Orfao A, Diaz-Agustin B et al. Indolent systemic mast cell disease in adults: immunophenotypic characterization of bone marrow mast cells and its diagnostic implications. Blood91(8), 2731–2736 (1998).
  • Akin C, Brockow K, D’Ambrosio C et al. Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp. Hematol.31(8), 686–692 (2003).
  • Corless CL, Harrell P, Lacouture M et al. Allele-specific polymerase chain reaction for the imatinib-resistant KITD816V and D816F mutations in mastocytosis and acute myelogenous leukemia. J. Mol. Diagn.8(5), 604–612 (2006).
  • Delhommeau F DS, James C, Masse A, le Couedic JP, Valle VD. TET2 is a novel tumor supressor gene inactivated in myeloproliferative neoplasms: identification of a pre-JAK2 V617F event. ASH Annu. Meeting Abstr. Iba-Ib3 (2008) (late breaking abstract).
  • Tefferi A, Pardanani A, Lim KH et al.TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia23(5), 905–911 (2009).
  • Kantarjian H, Schiffer C, Jones D, Cortes J. Monitoring the response and course of chronic myeloid leukemia in the modern era of BCR-ABL tyrosine kinase inhibitors: practical advice on the use and interpretation of monitoring methods. Blood111(4), 1774–1780 (2008).
  • Tefferi A, Kantarjian H. Long-term experience with imatinib therapy in chronic phase chronic myelogenous leukemia – remarkable activity with room for improvement. Am. J. Hematol.83(3), 175–177 (2008).
  • Walz C, Curtis C, Schnittger S et al. Transient response to imatinib in a chronic eosinophilic leukemia associated with ins(9;4)(q33;q12q25) and a CDK5RAP2–PDGFRA fusion gene. Genes Chromosomes Cancer45(10), 950–956 (2006).
  • Curtis CE, Grand FH, Musto P et al. Two novel imatinib-responsive PDGFRA fusion genes in chronic eosinophilic leukaemia. Br. J. Haematol.138(1), 77–81 (2007).
  • Rosati R, La Starza R, Luciano L et al.TPM3/PDGFRB fusion transcript and its reciprocal in chronic eosinophilic leukemia. Leukemia20(9), 1623–1624 (2006).
  • Curtis C, Apperley JF, Dang R et al. The platelet-derived growth factor receptor β fuses to two distinct loci at 3p21 in imatinib responsive chronic eosinophilic leukemia. Blood106(11), 909A (2005).
  • Lahortiga I, Akin C, Cools J et al. Activity of imatinib in systemic mastocytosis with chronic basophilic leukemia and a PRKG2–PDGFRB fusion. Haematologica93(1), 49–56 (2008).
  • Walz C, Metzgeroth G, Haferlach C et al. Characterization of three new imatinib-responsive fusion genes in chronic myeloproliferative disorders generated by disruption of the platelet-derived growth factor receptor β gene. Haematologica92(2), 163–169 (2007).
  • Baxter EJ, Kulkarni S, Vizmanos JL et al. Novel translocations that disrupt the platelet-derived growth factor receptor β (PDGFRB) gene in BCR–ABL-negative chronic myeloproliferative disorders. Br. J. Haematol.120(2), 251–256 (2003).
  • La Starza R, Rosati R, Roti G et al. A new NDE1/PDGFRB fusion transcript underlying chronic myelomonocytic leukaemia in Noonan Syndrome. Leukemia21(4), 830–833 (2007).
  • Abe A, Tanimoto M, Towatari M et al. Acute myeloblastic leukemia (M2) with translocation (7;11) followed by marked eosinophilia and additional abnormalities of chromosome 5. Cancer Genet. Cytogenet.83(1), 37–41 (1995).
  • Guasch G, Mack GJ, Popovici C et al.FGFR1 is fused to the centrosome-associated protein CEP110 in the 8p12 stem cell myeloproliferative disorder with t(8;9)(p12;q33). Blood95(5), 1788–1796 (2000).
  • Walz C, Chase A, Schoch C et al. The t(8;17)(p11;q23) in the 8p11 myeloproliferative syndrome fuses MYO18A to FGFR1. Leukemia19(6), 1005–1009 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.