453
Views
52
CrossRef citations to date
0
Altmetric
Review

MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer

, , , , , , & show all
Pages 423-440 | Published online: 09 Jan 2014

References

  • Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene19(8), 992–1001 (2000).
  • Callahan R, Smith GH. Common integration sites for MMTV in viral induced mouse mammary tumors. J. Mammary Gland Biol. Neoplasia13(3), 309–321 (2008).
  • Allred DC, Medina D. The relevance of mouse models to understanding the development and progression of human breast cancer. J. Mammary Gland Biol. Neoplasia13(3), 279–288 (2008).
  • Marcotte R, Muller WJ. Signal transductionin transgenic mouse models of human breast cancer-implications for human breast cancer. J. Mammary Gland Biol. Neoplasia13(3), 323–335 (2008).
  • Vlahakis G, Heston WE, Smith GH. Strain C3H-A-vy-fB mice: ninety percent incidence of mammary tumors transmitted by either parent. Science170(954), 185–187 (1970).
  • Michalides R, Verstraeten R, Shen FW, Hilgers J. Characterization and chromosomal distribution of endogenous mouse mammary tumor viruses of European mouse strains STS/A and GR/A. Virology142(2), 278–290 (1985).
  • Held W, Acha-Orbea H, MacDonald HR, Waanders GA. Superantigens and retroviral infection: insights from mouse mammary tumor virus. Immunol. Today15(4), 184–190 (1994).
  • Ross SR. Mouse mammary tumor virus and its interaction with the immune system. Immunol. Res.17(102), 209–216 (1998).
  • Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell31(1), 99–109 (1982).
  • Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell2(2), 103–112 (2002).
  • Sherr CJ. Principles of tumor suppression. Cell116(2), 235–246 (2004).
  • Hynes NE, Macdonald G. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell. Biol.21(2), 177–184 (2009).
  • Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J.19(13), 3159–3167 (2000).
  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science235(4785), 177–182 (1987).
  • Slamon DJ, Godolphin W, Jones LA et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science244(4905), 707–712 (1989).
  • Park JW, Neve RM, Szollosi J, Benz CC. Unraveling the biologic and clinical complexities of HER2. Clin. Breast Cancer8(5), 392–401 (2008).
  • Allred DC, Clark GM, Molina R et al. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum. Pathol.23(9), 974–979 (1992).
  • Mansour EG, Ravdin PM, Dressler L. Prognostic factors in early breast carcinoma. Cancer74(1 Suppl.), 381–400 (1994).
  • Bargmann CI, Hung MC, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell45 (5), 649–657 (1986).
  • Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature319(6050), 226–230 (1986).
  • Dankort DL, Muller WJ. Signal transduction in mammary tumorigenesis: a transgenic perspective. Oncogene19(8), 1038–1044 (2000).
  • Stern DF, Heffernan PA, Weinberg RA. p185, a product of the neu proto-oncogene, is a receptorlike protein associated with tyrosine kinase activity. Mol. Cell Biol.6(5), 1729–1740 (1986).
  • Xie Y, Li K, Hung MC. Tyrosine phosphorylation of Shc proteins and formation of Shc/Grb2 complex correlate to the transformation of NIH3T3 cells mediated by the point-mutation activated neu. Oncogene10(12), 2409–2413 (1995).
  • Kwong KY, Hung MC. A novel splice variant of HER2 with increased transformation activity. Mol. Carcinog.23(2), 62–68 (1998).
  • Siegel PM, Ryan ED, Cardiff RD, Muller WJ. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J.18(8), 2149–2164 (1999).
  • Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell54 (1) 105–115 (1988).
  • Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell57(6), 931–936 (1989).
  • Guy CT, Cardiff RD, Muller WJ. Activated neu induces rapid tumor progression. J. Biol. Chem.271(13), 7673–7678 (1996).
  • Siegel PM, Dankort DL, Hardy WR, Muller WJ. Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol. Cell Biol.14 (11), 7068–7077 (1994).
  • Siegel PM, Muller WJ. Mutations affecting conserved cysteine residues within the extracellular domain of Neu promote receptor dimerization and activation. Proc. Natl Acad. Sci. USA93(17), 8878–8883 (1996).
  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA89(22), 10578–10582 (1992).
  • Li B, Rosen JM, McMenamin-Balano J, Muller WJ, Perkins AS. neu/ERBB2 cooperates with p53–172H during mammary tumorigenesis in transgenic mice. Mol. Cell. Biol.17(6), 3155–3163 (1997).
  • D’Amico M, Wu K, Di Vizio D et al. The role of Ink4a/Arf in ErbB2 mammary gland tumorigenesis. Cancer Res.63(12), 3395–3402 (2003).
  • Andrechek ER, Hardy WR, Siegel PM, Rudnicki MA, Cardiff RD, Muller WJ. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl Acad. Sci. USA97(7), 3444–3449 (2000).
  • Montagna C andrechek ER, Padilla-Nash H, Muller WJ, Ried T. Centrosome abnormalities, recurring deletions of chromosome 4 and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu. Oncogene21(6), 890–898 (2002).
  • Andrechek ER, Laing MA, Girgis-Gabardo AA, Siegel PM, Cardiff RD, Muller WJ. Gene expression profiling of neu-induced mammary tumors from transgenic mice reveals genetic and morphological similarities to ErbB2-expressing human breast cancers. Cancer Res.63(16), 4920–4926 (2003).
  • Fantl V, Edwards PA, Steel JH, Vonderhaar BK, Dickson C. Impaired mammary gland development in Cyl-1(-/-) mice during pregnancy and lactation is epithelial cell autonomous. Dev. Biol.212(1), 1–11 (1999).
  • Sutherland RL, Musgrove EA. Cyclins and breast cancer. J. Mammary Gland Biol. Neoplasia.9(1), 95–104 (2004).
  • Arnold A, Papanikolaou A. Cyclin D1 in breast cancer pathogenesis. J. Clin. Oncol.23(18), 4215–4224 (2005).
  • Gillett C, Smith P, Gregory W et al. Cyclin D1 and prognosis in human breast cancer. Int. J. Cancer69(2), 92–99 (1996).
  • Hwang TS, Han HS, Hong YC, Lee HJ, Paik NS. Prognostic value of combined analysis of cyclin D1 and estrogen receptor status in breast cancer patients. Pathol. Int.53(2), 74–80 (2003).
  • Bièche I, Olivi M, Noguès C, Vidaud M, Lidereau R. Prognostic value of CCND1 gene status in sporadic breast tumours, as determined by real-time quantitative PCR assays. Br. J. Cancer86(4), 580–586 (2002).
  • Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature369(6482), 669–671 (1994).
  • Lin DI, Lessie MD, Gladden AB, Bassing CH, Wagner KU, Diehl JA. Disruption of cyclin D1 nuclear export and proteolysis accelerates mammary carcinogenesis. Oncogene27(9), 1231–1242 (2008).
  • Radeva G, Petrocelli T, Behrend E et al. Overexpression of the integrin-linked kinase promotes anchorage-independent cell cycle progression. J. Biol. Chem.272(21), 13937–13944 (1997).
  • Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature411(6841), 1017–1021 (2001).
  • Yu Q, Sicinska E, Geng Y et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell9(1), 23–32 (2006).
  • Corsino PE, Davis BJ, Nørgaard PH et al. Mammary tumors initiated by constitutive Cdk2 activation contain an invasive basal-like component. Neoplasia10(11), 1240–1252 (2008).
  • Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI. Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J. Cell Biol.165(6), 789–800 (2004).
  • Geng Y, Yu Q, Sicinska E et al. Cyclin E ablation in the mouse. Cell114(4), 431–443 (2003).
  • Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature401(6750), 297–300 (1999).
  • Bortner DM, Rosenberg MP. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol. Cell. Biol.17(1), 453–459 (1997).
  • Akli S, Zheng PJ, Multani AS et al. Tumor-specific low molecular weight forms of cyclin E induce genomic instability and resistance to p21, p27 and antiestrogens in breast cancer. Cancer Res.64(9), 3198–3208 (2004).
  • Keyomarsi K, Pardee AB. Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc. Natl Acad. Sci USA90(3), 1112–1116 (1993).
  • Keyomarsi K, O’Leary N, Molnar G, Lees E, Fingert HJ, Pardee AB. Cyclin E, a potential prognostic marker for breast cancer. Cancer Res.54(2), 380–385 (1994).
  • Keyomarsi K, Conte D Jr, Toyofuku W, Fox MP. Deregulation of cyclin E in breast cancer. Oncogene11(5), 941–950 (1995).
  • Keyomarsi K, Tucker SL, Buchholz TA et al. Cyclin E and survival in patients with breast cancer. N. Engl. J. Med.347(20), 1566–1575 (2002).
  • Akli S, Van Pelt CS, Bui T et al. Overexpression of the low molecular weight cyclin E in transgenic mice induces metastatic mammary carcinomas through the disruption of the ARF-p53 pathway. Cancer Res.67(15), 7212–7222 (2007).
  • Bos JL. ras oncogenes in human cancer: a review. Cancer Res.49(17), 4682–4689, (1989).
  • McCormick F. Signal transduction. How receptors turn Ras on. Nature363(6424), 15–16, (1993).
  • Downward J. Cell cycle: routine role for Ras. Curr Biol.7(4), R258–260 (1997).
  • Cox AD, Der CJ. Ras family signaling: therapeutic targeting. Cancer Biother.1(6), 599–606 (2002).
  • Rodriguez-Viciana P, Tetsu O, Oda K, Okada J, Rauen K, McCormick F. Cancer targets in the Ras pathway. Cold Spring Harb. Symp. Quant. Biol.70, 461–467 (2005).
  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell49(4), 465–475 (1987).
  • Hundley JE, Koester SK, Troyer DA, Hilsenbeck SG, Subler MA, Windle JJ. Increased tumor proliferation and genomic instability without decreased apoptosis in MMTV-ras mice deficient in p53. Mol. Cell. Biol.17(2), 723–731 (1997).
  • Donehower LA, Harvey M, Slagle BL et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356(6366), 215–221 (1992).
  • Adnane J, Jackson RJ, Nicosia SV, Cantor AB, Pledger WJ, Sebti SM. Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene19(47), 5338–5347 (2000).
  • Missero C, Di Cunto F, Kiyokawa H, Koff A, Dotto GP. The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev.10(23), 3065–3075 (1996).
  • Bearss DJ, Lee RJ, Troyer DA, Pestell RG, Windle JJ. Differential effects of p21(WAF1/CIP1) deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Res.62(7), 2077–2084 (2002).
  • Amati B, Frank SR, Donjerkovic D, Taubert S. Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim. Biophys. Acta1471(3), M135–145 (2001).
  • Eisenman RN. Deconstructing myc. Genes Dev.15(16), 2023–2030 (2001).
  • Takayama M, Taira T, Iguchi-Ariga SM, Ariga H. CDC6 interacts with c-Myc to inhibit E-box-dependent transcription by abrogating c-Myc/Max complex. FEBS Lett.477(1–2), 43–48 (2000).
  • Al-Kuraya K, Schraml P, Torhorst J et al. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res.64(23), 8534–8540 (2004).
  • Stewart TA, Pattengale PK, Leder P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell38(3), 627–637 (1984).
  • Schoenenberger CA andres AC, Groner B, van der Valk M, LeMeur M, Gerlinger P. Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J.7(1), 169–175 (1988).
  • Soengas MS, Alarcón RM, Yoshida H et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science284(5411), 156–159 (1999).
  • Coldwell MJ, Mitchell SA, Stoneley M, MacFarlane M, Willis AE. Initiation of Apaf-1 translation by internal ribosome entry. Oncogene19(7), 899–905 (2000).
  • Ray D, Terao Y, Fuhrken PG et al. Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability. Cancer Res.67(3), 984–991 (2007).
  • Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature382(6591), 511–517 (1996).
  • LaBaer J, Garrett MD, Stevenson LF et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev.11(7), 847–862 (1997).
  • Cheng M, Olivier P, Diehl JA et al. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J.18(6), 1571–1583 (1999).
  • McCormack SJ, Weaver Z, Deming S et al. Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene16(21), 2755–2766 (1998).
  • Katoh M. WNT and FGF gene clusters (review). Int. J. Oncol.21(6), 1269–1273 (2002).
  • Clevers H. Wnt/β-catenin signaling in development and disease. Cell127(3), 469–480 (2006).
  • Chien AJ, Conrad WH, Moon RT. A Wnt survival guide: from flies to human disease. J. Invest. Dermatol.129(7), 1614–1627 (2009).
  • Nusse R. The int genes in mammary tumorigenesis and in normal development. Trends Genet.4(10), 291–295 (1988).
  • Dickson C, Fantl V. Fgf-3, an oncogene in murine breast cancer. Cancer Treat. Res.71, 331–343 (1994).
  • Howe LR, Brown AMC. Wnt signaling and breast cancer. Cancer Biol. Ther3(1), 36–41 (2004).
  • Klarmann GJ, Decker A, Farrar WL. Epigenetic gene silencing in the Wnt pathway in breast cancer. Epigenetics3(2), 59–63 (2008).
  • Lin SY, Xia W, Wang JC et al. β-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc. Natl Acad. Sci. USA97(8), 4262–4266 (2000).
  • Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nat. Cell Biol.3(9), 793–801 (2001).
  • Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature307(5947), 131–136 (1984).
  • Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell55(4), 619–625 (1988).
  • Shackleford GM, MacArthur CA, Kwan HC, Varmus HE. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc. Natl Acad. Sci. USA90(2), 740–744 (1993).
  • Donehower LA, Godley LA, Aldaz CM et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev.9(7), 882–895 (1995).
  • Rowlands TM, Pechenkina IV, Hatsell SJ, Pestell RG, Cowin P. Dissecting the roles of β-catenin and cyclin D1 during mammary development and neoplasia. Proc. Natl Acad. Sci. USA100(20), 11400–11405 (2003).
  • Jhappan C, Gallahan D, Stahle C et al. Expression of an activated Notch-Related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev.6(3), 345–355 (1992).
  • Callahan R, Raafat A. Notch signaling in mammary gland tumorigenesis. J. Mammary Gland Biol. Neoplasia6(1), 23–36 (2001).
  • Shi W, Harris AL. Notch signaling in breast cancer and tumor angiogenesis: cross-talk and therapeutic potentials. J. Mammary Gland Biol. Neoplasia11(1), 41–52 (2006).
  • Sovak MA, Arsura M, Zanieski G, Kavanagh KT, Sonenshein GE. The inhibitory effects of transforming growth factor beta1 on breast cancer cell proliferation are mediated through regulation of aberrant nuclear factor-κB/Rel expression. Cell Growth Differ.10(8), 537–544 (1999).
  • Cogswell PC, Guttridge DC, Funkhouser WK, Baldwin AS Jr. Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and for Bcl-3. Oncogene19(9), 1123–1131 (2000).
  • Romieu-Mourez R, Kim DW, Shin SM et al. Mouse mammary tumor virus c-rel transgenic mice develop mammary tumors. Mol. Cell. Biol.23(16), 5738–5754 (2003).
  • Shin SR, Sánchez-Velar N, Sherr DH, Sonenshein GE. 7,12-dimethylbenz(a)anthracene treatment of a c-rel mouse mammary tumor cell line induces epithelial to mesenchymal transition via activation of nuclear factor-κB. Cancer Res.66(5), 2570–2575 (2006).
  • Gunther EJ, Belka GK, Wertheim GB et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J.16(3), 283–292 (2002).
  • Moody SE, Sarkisian CJ, Hahn KT et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell2(6), 451–461 (2002).
  • Gunther EJ, Moody SE, Belka GK et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev.17(4), 488–501 (2003).
  • Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol.9(5), 493–505 (2007).
  • Davie SA, Maglione JE, Manner CK et al. Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice. Transgenic Res.16(2), 193–201 (2007).
  • Mahler JF, Stokes W, MannPC, Takaoka M, Maronpot RR. Spontaneous lesions in aging FVB/N mice. Toxicol. Pathol.24(6), 710–716 (1996).
  • Rowse GJ, Ritland SR, Gendler SJ. Genetic Modulation of neu proto-oncogene-induced mammary tumorigenesis. Cancer Res.58(12), 2675–2679 (1998).
  • Mikaelian I, Blades N, Churchill GA et al. Proteotypic classification of spontaneous and transgenic mammary neoplasms. Breast Cancer Res.6(6), R668–R679 (2004).
  • Durgam VR, Tekmal RR. The nature and expression of int-5, a novel MMTV integration locus gene in carcinogen-induced mammary tumors. Cancer Lett.87(2), 179–186 (1994).
  • Bui TD, Rankin J, Smith K et al. A novel human Wnt gene, WNT10B, maps to 12q13 and is expressed in human breast carcinomas. Oncogene14(10), 1249–1253 (1997).
  • Theodorou V, Kimm MA, Boer M et al. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat. Genet.39(6), 759–769 (2007).
  • Axel R, Schlom J, Spiegelman S. Presence in human breast cancer of RNA homologous to mouse mammary tumour virus RNA. Nature235(5332), 32–36 (1972).
  • Levine PH, Mesa-Tejada R, Keydar I, Tabbane F, Spiegelman S, Mourali N. Increased incidence of mouse mammary tumor virus-related antigen in Tunisian patients with breast cancer. Int. J. Cancer33(3), 305–308 (1984).
  • Litvinov SV, Golovkina TV. Expression of proteins immunologically related to murine mammary tumour virus (MMTV) core proteins in the cells of breast cancer continuous lines MCF-7, T47D, MDA-231 and cells from human milk. Acta Virol.33(2), 137–142 (1989).
  • Zotter S, Kemmer C, Lossnitzer A, Grossmann H, Johannsen BA. Mouse mammary tumour virus-related antigens in core-like density fractions from large samples of women’s milk. Eur. J. Cancer16(4), 455–467 (1980).
  • Day NK, Witkin SS, Sarkar NH et al. Antibodies reactive with murine mammary tumor virus in sera of patients with breast cancer: geographic and family studies. Proc. Natl Acad. Sci. USA78(4), 2483–2487 (1981).
  • Witkin SS, Sarkar NH, Kinne DW, Breed CN, Good RA, Day NK. Antigens and antibodies cross-reactive to the murine mammary tumor virus in human breast cyst fluids. J. Clin. Invest.67(1), 216–222 (1981).
  • Keydar I, Ohno T, Nayak R et al. Properties of retrovirus-like particles produced by a human breast carcinoma cell line: immunological relationship with mouse mammary tumor virus proteins. Proc. Natl Acad. Sci. USA81(13), 4188–4192 (1984).
  • Wang Y, Holland JF, Bleiweiss IJ et al. Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res.55(22), 5173–5179 (1995).
  • Etkind P, Du J, Khan A, Pillitteri J, Wiernik PH. Mouse mammary tumor virus-like ENV gene sequences in human breast tumors and in a lymphoma of a breast cancer patient. Clin. Cancer Res.6(4), 1273–1278 (2000).
  • Amarante MK, Watanabe MA. The possible involvement of virus in breast cancer. J. Cancer Res. Clin. Oncol.135(3), 329–337 (2009).
  • Zammarchi F, Pistello M, Piersigilli A et al. MMTV-like sequences in human breast cancer: a fluorescent PCR/laser microdissection approach. J. Pathol.209(4), 436–444 (2006).
  • Liu B, Wang Y, Melana SM et al. Identification of a proviral structure in human breast cancer. Cancer Res.61(4), 1754–1759 (2001).
  • Wang Y, Jiang JD, Xu D et al. A mouse mammary tumor virus-like long terminal repeat superantigen in human breast cancer. Cancer Res.64(12), 4105–4111 (2004).
  • Lawson JS, Tran DD, Carpenter E et al. Presence of mouse mammary tumour-like virus gene sequences may be associated with morphology of specific human breast cancer. J. Clin. Pathol.59(12), 1287–1292 (2006).
  • Etkind PR, Stewart AF, Wiernik PH. Mouse mammary tumor virus (MMTV)-like DNA sequences in the breast tumors of father, mother and daughter. Infect. Agent. Cancer3(2), 1–11 (2008).
  • Wang Y, Melana SM, Baker B et al. High prevalence of MMTV-like env gene sequences in gestational breast cancer. Med. Oncol.20(3), 233–236 (2003).
  • Faedo M, Ford CE, Mehta R, Blazek K, Rawlinson WD. Mouse mammary tumor-like virus is associated with p53 nuclear accumulation and progesterone receptor positivity but not estrogen positivity in human female breast cancer. Clin. Cancer Res.10(13), 4417–4419 (2004).
  • Langerød A, Zhao H, Borgan Ø et al. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res.9(3), R30 (2007).
  • Ford CE, Faedo M, Crouch R, Lawson JS, Rawlinson WD. Progression from normal breast pathology to breast cancer is associated with increasing prevalence of mouse mammary tumor virus-like sequences in men and women. Cancer Res.64(14), 4755–4759 (2004).
  • Witkin SS, Sarkar NH, Kinne DW, Good RA, Day NK. Antibodies reactive with the mouse mammary tumor virus in sera of breast cancer patients. Int. J. Cancer25(6), 721–725 (1980).
  • Tomana M, Kajdos AH, Niedermeier W, Durkin WJ, Mestecky J. Antibodies to mouse mammary tumor virus-related antigen in sera of patients with breast carcinoma. Cancer47(11), 2696–2703 (1981).
  • Keydar I, Selzer G, Chaitchik S, Hareuveni M, Karby S, Hizi A. A viral antigen as a marker for the prognosis of human breast cancer. Eur. J. Cancer Clin. Oncol.18(12), 1321–1328 (1982).
  • Chaitchik S, Kabakow B, De Chabon A et al. Prognostic factors in breast cancer – a pathological and immunological study of patients with stage 1 breast cancer. Eur. J. Surg. Oncol.13(6), 499–504 (1987).
  • Tilli MT, Frech MS, Steed ME et al. Introduction of estrogen receptor-α into the tTA/TAg conditional mouse model precipitates the development of estrogen-responsive mammary adenocarcinoma. Am. J. Pathol.163(5), 1713–1719 (2003).
  • Wagner KU, Wall RJ, St-Onge L et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res.25(21), 4323–4330 (1997).
  • Dourdin N, Schade B, Lesurf R et al. Phosphatase and tensin homologue deleted on chromosome 10 deficiency accelerates tumor induction in a mouse model of ErbB-2 mammary tumorigenesis. Cancer Res.68(7), 2122–2131 (2008).
  • Roussel MF, Theodoras AM, Pagano M, Sherr CJ. Rescue of defective mitogenic signaling by D-type cyclins. Proc. Natl Acad. Sci. USA92(15), 6837–6841 (1995).
  • Inoue K, Roussel MF, Sherr CJ. Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc. Natl Acad. Sci. USA96(7), 3993–3998 (1999).
  • Inoue K, Wen R, Rehg JE et al. (2000). Disruption of the ARF transcriptional activator DMP1 facilitates cell immortalization, Ras transformation and tumorigenesis. Genes Dev.14(14), 1797–1809 (2000).
  • Inoue K, Zindy F, Randle DH, Rehg JE, Sherr CJ. Dmp1 is haplo-insufficient for tumor suppression and modifies the frequencies of Arf and p53 mutations in Myc-induced lymphomas. Genes Dev.15(22), 2934–2939 (2001).
  • Inoue K, Mallakin A, Frazier, DP. Dmp1 and tumor suppression (Review). Oncogene26(30), 4329–4335 (2007).
  • Sreeramaneni R, Chaudhry A, McMahon M, Sherr CJ, Inoue K. Ras-Raf-Arf signaling critically depends on Dmp1 transcription factor. Mol. Cell. Biol.25(1), 220–232 (2005).
  • Mallakin A, Taneja P, Matise LA, Willingham MC, Inoue K. Expression of Dmp1 in specific differentiated, nonproliferating cells and its repression by E2Fs. Oncogene25(59), 7703–7713 (2006).
  • Taneja P, Mallakin, A, Matise LA, Frazier DP, Choudhary M, Inoue K. Repression of Dmp1 and Arf transcription by anthracyclins: critical roles of the NF-κB subunit p65. Oncogene26(33), 7457–7466 (2007).
  • Mallakin A, Sugiyama T, Taneja P et al. Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell12(4), 381–394 (2007).
  • Sugiyama T, Taneja P, Frazier DP et al. Oncogenic and non-oncogenic signaling pathways that regulate Dmp1 (Dmtf1). Clin. Med. Oncol.2, 1–11 (2008).
  • Sugiyama T, Frazier DP, Taneja P, Morgan RL, Willingham MC, Inoue K. Role of DMP1 and its future in lung cancer diagnostics. Expert Rev. Mol. Diagn.8(4), 435–447 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.