167
Views
17
CrossRef citations to date
0
Altmetric
Review

Recent advances in quantitative chimerism analysis

, &
Pages 817-832 | Published online: 09 Jan 2014

References

  • Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood112(12), 4371–4383 (2008).
  • Kolb HJ, Schmid C, Barrett AJ, Schendel DJ. Graft-versus-leukemia reactions in allogeneic chimeras. Blood103(3), 767–776 (2004).
  • Vandenberghe P, Boogaerts MA. Graft-versus-leukemia and graft-versus-lymphoma effects of allogeneic bone marrow transplantation and of allogeneic donor leukocyte transfusions. Ann. Hematol.71(5), 209–217 (1995).
  • Sanchez J, Serrano J, Gomez P et al. Clinical value of immunological monitoring of minimal residual disease in acute lymphoblastic leukaemia after allogeneic transplantation. Br. J. Haematol.116(3), 686–694 (2002).
  • Serrano J, Roman J, Sanchez J et al. Molecular analysis of lineage-specific chimerism and minimal residual disease by RT-PCR of p210(BCR-ABL) and p190(BCR-ABL) after allogeneic bone marrow transplantation for chronic myeloid leukemia: increasing mixed myeloid chimerism and p190(BCR-ABL) detection precede cytogenetic relapse. Blood95(8), 2659–2665 (2000).
  • Uzunel M, Jaksch M, Mattsson J, Ringden O. Minimal residual disease detection after allogeneic stem cell transplantation is correlated to relapse in patients with acute lymphoblastic leukaemia. Br. J. Haematol.122(5), 788–794 (2003).
  • Rinkevich B. Human natural chimerism: an acquired character or a vestige of evolution? Hum. Immunol.62(6), 651–657 (2001).
  • Baron F, Baker JE, Storb R et al. Kinetics of engraftment in patients with hematologic malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood104(8), 2254–2262 (2004).
  • Baron F, Maris MB, Storer BE et al. High doses of transplanted CD34+ cells are associated with rapid T-cell engraftment and lessened risk of graft rejection, but not more graft-versus-host disease after nonmyeloablative conditioning and unrelated hematopoietic cell transplantation. Leukemia19(5), 822–828 (2005).
  • Bader P, Beck J, Frey A et al. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant.21(5), 487–495 (1998).
  • Barrios M, Jimenez-Velasco A, Roman-Gomez J et al. Chimerism status is a useful predictor of relapse after allogeneic stem cell transplantation for acute leukemia. Haematologica88(7), 801–810 (2003).
  • Lamba R, Abella E, Kukuruga D et al. Mixed hematopoietic chimerism at day 90 following allogenic myeloablative stem cell transplantation is a predictor of relapse and survival. Leukemia18(10), 1681–1686 (2004).
  • Bader P, Niethammer D, Willasch A, Kreyenberg H, Klingebiel T. How and when should we monitor chimerism after allogeneic stem cell transplantation? Bone Marrow Transplant.35(2), 107–119 (2005).
  • Kristt D, Israeli M, Narinski R et al. Hematopoietic chimerism monitoring based on STRs: quantitative platform performance on sequential samples. J. Biomol. Tech.16(4), 380–391 (2005).
  • Kristt D, Stein J, Yaniv I, Klein T. Assessing quantitative chimerism longitudinally: technical considerations, clinical applications and routine feasibility. Bone Marrow Transplant.39(5), 255–268 (2007).
  • Thiede C, Bornhauser M, Oelschlagel U et al. Sequential monitoring of chimerism and detection of minimal residual disease after allogeneic blood stem cell transplantation (BSCT) using multiplex PCR amplification of short tandem repeat-markers. Leukemia15(2), 293–302 (2001).
  • Reich DE, Schaffner SF, Daly MJ et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nat. Genetics32(1), 135–142 (2002).
  • Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat. Reviews7(2), 85–97 (2006).
  • Scherer SW, Lee C, Birney E et al. Challenges and standards in integrating surveys of structural variation. Nat. Genetics39(7 Suppl.), S7–S15 (2007).
  • Beckman JS, Weber JL. Survey of human and rat microsatellites. Genomics12(4), 627–631 (1992).
  • Ellegren H. Heterogeneous mutation processes in human microsatellite DNA sequences. Nat. Genetics24(4), 400–402 (2000).
  • Butler JM. Genetics and genomics of core short tandem repeat loci used in human identity testing. J. Forensic Sci.51(2), 253–265 (2006).
  • Butler JM. Short tandem repeat typing technologies used in human identity testing. Biotechniques43(4), ii–v (2007).
  • Beck O, Seidl C, Lehrnbecher T et al. Quantification of chimerism within peripheral blood, bone marrow and purified leukocyte subsets: comparison of singleplex and multiplex PCR amplification of short tandem repeat (STR) loci. Eur. J. Haematol.76(3), 237–244 (2006).
  • Fernandez-Aviles F, A Urbano-Ispizua, Aymerich M et al. Serial quantification of lymphoid and myeloid mixed chimerism using multiplex PCR amplification of short tandem repeat-markers predicts graft rejection and relapse, respectively, after allogeneic transplantation of CD34+ selected cells from peripheral blood. Leukemia17(3), 613–620 (2003).
  • Koehl U, Beck O, Esser R et al. Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Frankfurt experience. Leukemia17(1), 232–236 (2003).
  • Sufliarska S, Minarik G, Horakova J et al. Establishing the method of chimerism monitoring after allogeneic stem cell transplantation using multiplex polymerase chain reaction amplification of short tandem repeat markers and amelogenin. Neoplasma54(5), 424–430 (2007).
  • Mills RE, Luttig CT, Larkins CE et al. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res.16(9), 1182–1190 (2006).
  • Weber JL, David D, Heil J et al. Human diallelic insertion/deletion polymorphisms. Am. J. Hum. Genet.71(4), 854–862 (2002).
  • Alizadeh M, Bernard M, Danic B et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood99(12), 4618–4625 (2002).
  • Jimenez-Velasco A, Barrios M, Roman-Gomez J et al. Reliable quantification of hematopoietic chimerism after allogeneic transplantation for acute leukemia using amplification by real-time PCR of null alleles and insertion/deletion polymorphisms. Leukemia19(3), 336–343 (2005).
  • Sachidanandam R, Weissman D, Schmidt SC et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature409(6822), 928–933 (2001).
  • Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng.9, 289–320 (2007).
  • Sobrino B, Carracedo A. SNP typing in forensic genetics: a review. Methods Mol. Biol.297, 107–126 (2005).
  • Kaller M, Lundeberg J, Ahmadian A. Arrayed identification of DNA signatures. Expert Rev. Mol. Diagn.7(1), 65–76 (2007).
  • Tindall EA, Speight G, Petersen DC, Padilla EJ, Hayes VM. Novel Plexor SNP genotyping technology: comparisons with TaqMan and homogenous MassEXTEND MALDI-TOF mass spectrometry. Hum. Mutat.28(9), 922–927 (2007).
  • Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant.34(1), 1–12 (2004).
  • Thiede C. Diagnostic chimerism analysis after allogeneic stem cell transplantation: new methods and markers. Am. J. Pharmacogenomics4(3), 177–187 (2004).
  • Acquaviva C, Duval M, Mirebeau D, Bertin R, Cave H. Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Paris–Robert Debre experience. Leukemia17(1), 241–246 (2003).
  • Chalandon Y, Vischer S, Helg C, Chapuis B, Roosnek E. Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Geneva experience. Leukemia17(1), 228–231 (2003).
  • Hancock JP, Goulden NJ, Oakhill A, Steward CG. Quantitative analysis of chimerism after allogeneic bone marrow transplantation using immunomagnetic selection and fluorescent microsatellite PCR. Leukemia17(1), 247–251 (2003).
  • Hochberg EP, Miklos DB, Neuberg D et al. A novel rapid single nucleotide polymorphism (SNP)-based method for assessment of hematopoietic chimerism after allogeneic stem cell transplantation. Blood101(1), 363–369 (2003).
  • Kreyenberg H, Holle W, Mohrle S, Niethammer D, Bader P. Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Tuebingen experience. Leukemia17(1), 237–240 (2003).
  • Scharf SJ, Smith AG, Hansen JA, McFarland C, Erlich HA. Quantitative determination of bone marrow transplant engraftment using fluorescent polymerase chain reaction primers for human identity markers. Blood85(7), 1954–1963 (1995).
  • Schraml E, Daxberger H, Watzinger F, Lion T. Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Vienna experience. Leukemia17(1), 224–227 (2003).
  • Thiede C, Bornhauser M, Ehninger G. Evaluation of STR informativity for chimerism testing – comparative analysis of 27 STR systems in 203 matched related donor recipient pairs. Leukemia18(2), 248–254 (2004).
  • Ariffin H, Daud SS, Mohamed Z et al. Evaluation of two short tandem repeat multiplex systems for post-haematopoietic stem cell transplantation chimerism analysis. Singapore Med. J.48(4), 333–337 (2007).
  • Oliver DH, Thompson RE, Griffin CA, Eshleman JR. Use of single nucleotide polymorphisms (SNP) and real-time polymerase chain reaction for bone marrow engraftment analysis. J. Mol. Diagn.2(4), 202–208 (2000).
  • Fredriksson M, Barbany G, Liljedahl U et al. Assessing hematopoietic chimerism after allogeneic stem cell transplantation by multiplexed SNP genotyping using microarrays and quantitative analysis of SNP alleles. Leukemia18(2), 255–266 (2004).
  • Gineikiene E, Stoskus M, Griskevicius L. Single nucleotide polymorphism-based system improves the applicability of quantitative PCR for chimerism monitoring. J. Mol. Diagn.11(1), 66–74 (2009).
  • Harries LW, Wickham CL, Evans JC et al. Analysis of haematopoietic chimaerism by quantitative real-time polymerase chain reaction. Bone Marrow Transplant.35(3), 283–290 (2005).
  • Koldehoff M, Steckel NK, Hlinka M, Beelen DW, Elmaagacli AH. Quantitative analysis of chimerism after allogeneic stem cell transplantation by real-time polymerase chain reaction with single nucleotide polymorphisms, standard tandem repeats, and Y-chromosome-specific sequences. Am. J. Hematol.81(10), 735–746 (2006).
  • Martinez-Lopez J, Crooke A, Grande S et al. Real-time PCR quantification of haematopoietic chimerism after transplantation: a comparison between TaqMan and hybridization probes technologies. Int. J. Lab. Hematol.: 10.1111/j.1751-553X.2009.01166.x (2009) (Epub ahead of print).
  • Eshel R, Vainas O, Shpringer M, Naparstek E. Highly sensitive patient-specific real-time PCR SNP assay for chimerism monitoring after allogeneic stem cell transplantation. Lab. Hematol.12(1), 39–46 (2006).
  • Willasch A, Schneider G, Reincke BS et al. Sequence polymorphism systems for quantitative real-time polymerase chain reaction to characterize hematopoietic chimerism-high informativity and sensitivity as well as excellent reproducibility and precision of measurement. Lab. Hematol.13(3), 73–84 (2007).
  • Borrill V, Schlaphoff T, E du Toit et al. The use of short tandem repeat polymorphisms for monitoring chimerism following bone marrow transplantation: a short report. Hematology13(4), 210–214 (2008).
  • Lion T. Summary: reports on quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia17(1), 252–254 (2003).
  • Lobashevsky AL, Senkbeil RW, Townsend JE, Mink CA, Thomas JM. Quantitative analysis of chimerism using a short tandem repeat method on a fluorescent automated DNA sequencer. Clin. Lab. Haematol.28(1), 40–49 (2006).
  • Fan H, Chu JY. A brief review of short tandem repeat mutation. Genomics Proteomics Bioinformatics5(1), 7–14 (2007).
  • Walsh PS, Fildes NJ, Reynolds R. Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res.24(14), 2807–2812 (1996).
  • Chen DP, Tseng CP, Tsai SH et al. Systematic analysis of stutters to enhance the accuracy of chimerism testing. Ann. Clin. Lab. Sci.38(3), 264–272 (2008).
  • Schraml E, Lion T. Interference of dye-associated fluorescence signals with quantitative analysis of chimerism by capillary electrophoresis. Leukemia17(1), 221–223 (2003).
  • Walsh PS, Erlich HA, Higuchi R. Preferential PCR amplification of alleles: mechanisms and solutions. PCR Methods Appl.1(4), 241–250 (1992).
  • Watzinger F, Lion T, Steward C. The RSD code: proposal for a nomenclature of allelic configurations in STR-PCR-based chimerism testing after allogeneic stem cell transplantation. Leukemia20(8), 1448–1452 (2006).
  • Madeo D, Cappellari A, Castaman G, Raimondi R, Rodeghiero F. Multiplex amplification and fluorimetric detection of short tandem repeats for mixed chimerism after bone marrow transplant. Leukemia Lymphoma44(8), 1395–1404 (2003).
  • Sellathamby S, Balasubramanian P, Sivalingam S et al. Developing an algorithm of informative markers for evaluation of chimerism after allogeneic bone marrow transplantation. Bone Marrow Transplant.37(8), 751–755 (2006).
  • Talwar S, Khan F, Nityanand S, Agrawal S. Chimerism monitoring following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant.39(9), 529–535 (2007).
  • Willasch A, Eing S, Weber G et al. Enrichment of cell subpopulations applying automated MACS technique: purity, recovery and applicability for PCR-based chimerism analysis. Bone Marrow Transplant. DOI: 10.1038/bmt.2009.89 (2009) (Epub ahead of print).
  • Chen DP, Tsai SH, Tseng CP et al. Bone marrow transplant relapse with loss of an allele. Clin. Chim. Acta387(1–2), 161–164 (2008).
  • Dunn T, Allen R, Bates F et al. Cytogenetic changes associated with myelodysplastic syndrome affecting bone marrow engraftment analysis. J. Mol. Diagn.8(2), 288–294 (2006).
  • Seywerd K, Allen RA, Dunn ST. Primer site polymorphisms: potential implications for bone marrow engraftment monitoring. Genet. Test. Mol. Biomarkers13(3), 415–419 (2009).
  • Schichman SA, Lin P, Gilbrech LJ et al. Bone marrow transplant engraftment analysis with loss of an informative allele. J. Mol. Diagn.4(4), 230–232 (2002).
  • Swierczynski SL, Hafez MJ, Philips J et al. Bone marrow engraftment analysis after granulocyte transfusion. J. Mol. Diagn.7(3), 422–426 (2005).
  • Butler JM, Schoske R, Vallone PM et al. A novel multiplex for simultaneous amplification of 20 Y chromosome STR markers. Forensic Sci. Int.129(1), 10–24 (2002).
  • Rodig H, Roewer L, Gross A et al. Evaluation of haplotype discrimination capacity of 35 Y-chromosomal short tandem repeat loci. Forensic Sci. Int.174(2–3), 182–188 (2008).
  • Schoske R, Vallone PM, Kline MC, Redman JW, Butler JM. High-throughput Y-STR typing of U.S. populations with 27 regions of the Y chromosome using two multiplex PCR assays. Forensic Sci. Int.139(2–3), 107–121 (2004).
  • Schoske R, Vallone PM, Ruitberg CM, Butler JM. Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal. Bioanal. Chem.375(3), 333–343 (2003).
  • Vallone PM, Hill CR, Butler JM. Demonstration of rapid multiplex PCR amplification involving 16 genetic loci. Forensic Sci. Int.3(1), 42–45 (2008).
  • Butler JM. Constructing STR multiplex assays. Methods Mol. Biol.297, 53–66 (2005).
  • Kristt D, Stein J, Yaniv I, Klein T. Interactive ChimerTrack software facilitates computation, visual displays and long-term tracking of chimeric status based on STRs. Leukemia18(5), 909–911 (2004).
  • Kristt D, Klein T. Reliability of quantitative chimerism results: assessment of sample performance using novel parameters. Leukemia20(6), 1169–1172 (2006).
  • Kristt D, Stein J, Klein T. Frontiers of stem cell transplantation monitoring: capturing graft dynamics through routine longitudinal chimerism analysis. Isr. Med. Assoc. J.9(3), 159–162 (2007).
  • Maas F, Schaap N, Kolen S et al. Quantification of donor and recipient hemopoietic cells by real-time PCR of single nucleotide polymorphisms. Leukemia17(3), 621–629 (2003).
  • Newton CR, Graham A, Heptinstall LE et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res.17(7), 2503–2516 (1989).
  • Newton CR, Summers C, Heptinstall LE et al. Genetic analysis in cystic fibrosis using the amplification refractory mutation system (ARMS): the J3.11 MspI polymorphism. J. Med. Genet.28(4), 248–251 (1991).
  • Ayyadevara S, Thaden JJ, Shmookler RJ. Discrimination of primer 3´-nucleotide mismatch by taq DNA polymerase during polymerase chain reaction. Anal. Biochem.284(1), 11–18 (2000).
  • Masmas TN, Madsen HO, Petersen SL et al. Evaluation and automation of hematopoietic chimerism analysis based on real-time quantitative polymerase chain reaction. Biol. Blood Marrow Transplant.11(7), 558–566 (2005).
  • Kutyavin IV, Afonina IA, Mills A et al. 3´-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res.28(2), 655–661 (2000).
  • Johnson MP, Haupt LM, Griffiths LR. Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Res.32(6), E55 (2004).
  • Hazbon MH, Alland D. Hairpin primers for simplified single-nucleotide polymorphism analysis of Mycobacterium tuberculosis and other organisms. J. Clin. Microbiol.42(3), 1236–1242 (2004).
  • Hiratsuka M, Tsukamoto N, Konno Y et al. Forensic assessment of 16 single nucleotide polymorphisms analyzed by hybridization probe assay. Tohoku J. Exp. Med.207(4), 255–261 (2005).
  • Campregher PV, Gooley T, Scott BL et al. Results of donor lymphocyte infusions for relapsed myelodysplastic syndrome after hematopoietic cell transplantation. Bone Marrow Transplant.40(10), 965–971 (2007).
  • Castro FA, Palma PV, Morais FR, Voltarelli JC. Immunological effects of donor lymphocyte infusion in patients with chronic myelogenous leukemia relapsing after bone marrow transplantation. Braz. J. Med. Biol. Res.37(2), 201–206 (2004).
  • Cummins M, Cwynarski K, Marktel S et al. Management of chronic myeloid leukaemia in relapse following donor lymphocyte infusion induced remission: a retrospective study of the Clinical Trials Committee of the British Society of Blood & Marrow Transplantation (BSBMT). Bone Marrow Transplant.36(12), 1065–1069 (2005).
  • Depil S, Deconinck E, Milpied N et al. Donor lymphocyte infusion to treat relapse after allogeneic bone marrow transplantation for myelodysplastic syndrome. Bone Marrow Transplant.33(5), 531–534 (2004).
  • Loren AW, Porter DL. Donor leukocyte infusions after unrelated donor hematopoietic stem cell transplantation. Curr. Opin. Oncol.18(2), 107–114 (2006).
  • Loren AW, Porter DL. Donor leukocyte infusions for the treatment of relapsed acute leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant.41(5), 483–493 (2008).
  • Schmid C, Labopin M, Nagler A et al. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J. Clin. Oncol.25(31), 4938–4945 (2007).
  • Petersen SL. Alloreactivity as therapeutic principle in the treatment of hematologic malignancies. Studies of clinical and immunologic aspects of allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. Danish Medical Bulletin54(2), 112–139 (2007).
  • Choi SJ, Lee JH, Lee JH et al. Treatment of relapsed acute lymphoblastic leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a prospective study. Bone Marrow Transplant.36(2), 163–169 (2005).
  • Choi SJ, Lee JH, Lee JH et al. Treatment of relapsed acute myeloid leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a high incidence of isolated extramedullary relapse. Leukemia18(11), 1789–1797 (2004).
  • Shimoni A, Nagler A. Non-myeloablative stem cell transplantation (NST): chimerism testing as guidance for immune-therapeutic manipulations. Leukemia15(12), 1967–1975 (2001).
  • Mapara MY, Kim YM, Marx J, Sykes M. Donor lymphocyte infusion-mediated graft-versus-leukemia effects in mixed chimeras established with a nonmyeloablative conditioning regimen: extinction of graft-versus-leukemia effects after conversion to full donor chimerism. Transplantation76(2), 297–305 (2003).
  • Canitrot Y, Falinski R, Louat T et al. p210 BCR/ABL kinase regulates nucleotide excision repair (NER) and resistance to UV radiation. Blood102(7), 2632–2637 (2003).
  • Chng WJ, Ketterling RP, Fonseca R. Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma. Genes Chromosomes Cancer45(12), 1111–1120 (2006).
  • Koptyra M, Falinski R, Nowicki MO et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood108(1), 319–327 (2006).
  • Mullighan CG, Downing JR. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia(2009).
  • Mullighan CG, Phillips LA, Su X et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science322(5906), 1377–1380 (2008).
  • Nowicki MO, Falinski R, Koptyra M et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood104(12), 3746–3753 (2004).
  • Skorski T. BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene21(56), 8591–8604 (2002).
  • Skorski T. BCR/ABL, DNA damage and DNA repair: implications for new treatment concepts. Leukemia Lymphoma49(4), 610–614 (2008).
  • Downing JR, Mullighan CG. Tumor-specific genetic lesions and their influence on therapy in pediatric acute lymphoblastic leukemia. Hematology Am. Soc. Hematol. Educ. Program118–122, 508 (2006).
  • Krog GR, Clausen FB, Dziegiel MH. Quantitation of RHD by real-time polymerase chain reaction for determination of RHD zygosity and RHD mosaicism/chimerism: an evaluation of four quantitative methods. Transfusion47(4), 715–722 (2007).
  • Waterfall CM, Cobb BD. Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis. Nucleic Acids Res.29(23), E119 (2001).
  • Sanchez JJ, Borsting C, Balogh K et al. Forensic typing of autosomal SNPs with a 29 SNP-multiplex--results of a collaborative EDNAP exercise. Forensic Sci. Int.2(3), 176–183 (2008).
  • Sanchez JJ, Borsting C, Morling N. Typing of Y chromosome SNPs with multiplex PCR methods. Methods Mol. Biol.297, 209–228 (2005).
  • Sanchez JJ, Phillips C, Borsting C et al. A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis27(9), 1713–1724 (2006).
  • Butler JM, Coble MD, Vallone PM. STRs vs. SNPs: thoughts on the future of forensic DNA testing. Forensic Sci. Med. Pathol.3, 200–205 (2007).
  • Bader P, Kreyenberg H, Hoelle W et al. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: possible role for pre-emptive immunotherapy? J. Clin. Oncol.22(9), 1696–1705 (2004).
  • Bader P, Kreyenberg H, Hoelle W et al. Increasing mixed chimerism defines a high-risk group of childhood acute myelogenous leukemia patients after allogeneic stem cell transplantation where pre-emptive immunotherapy may be effective. Bone Marrow Transplant.33(8), 815–821 (2004).
  • Bader P, Niemeyer C, Willasch A et al. Children with myelodysplastic syndrome (MDS) and increasing mixed chimaerism after allogeneic stem cell transplantation have a poor outcome which can be improved by pre-emptive immunotherapy. Brit. J. Haematol.128(5), 649–658 (2005).
  • Horn B, Soni S, Khan S et al. Feasibility study of preemptive withdrawal of immunosuppression based on chimerism testing in children undergoing myeloablative allogeneic transplantation for hematologic malignancies. Bone Marrow Transplant.43(6), 469–476 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.