405
Views
52
CrossRef citations to date
0
Altmetric
Review

mTOR in renal cell cancer: modulator of tumor biology and therapeutic target

Pages 231-241 | Published online: 09 Jan 2014

References

  • Lipworth L, McLaughlin JK. The epidemiology of renal cell carcinoma. J. Urol.176, 2353–2358 (2006).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2008. CA Cancer J. Clin.58(2), 71–96 (2008).
  • Ries LAG, EM, Kosary CL, Hankey BF, Miller BA, Clegg L, Edwards BK. SEER Cancer Statistics Review, 1973–1999. SEER. National Cancer Institute, MD, USA (2002)
  • Mathew A, Devesa SS, Fraumeni JF Jr, Chow WH. Global increases in kidney cancer incidence, 1973–1992. Eur. J. Cancer Prev.11(2), 171–178 (2002).
  • Cohen HT, McGovern FJ. Renal-cell carcinoma. N. Engl. J. Med.353(23), 2477–2490 (2005).
  • Coppin C, Porzsolt F, Awa A et al. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst. Rev. (1), CD001425 (2005).
  • Wysocki PJ, Zolnierek J, Szczylik C, Mackiewicz A. Recent developments in renal cell cancer immunotherapy. Expert Opin. Biol. Ther.7(5), 727–737 (2007).
  • Wysocki PJ, Zolnierek J, Szczylik C, Mackiewicz A. Targeted therapy of renal cell cancer. Curr. Opin. Investig. Drugs9(6), 570–575 (2008).
  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer2(7), 489–501 (2002).
  • Gschwendt M. Protein kinase C delta. Eur. J. Biochem.259(3), 555–564 (1999).
  • Steinberg SF. Distinctive activation mechanisms and functions for protein kinase Cδ. Biochem. J.384(Pt 3), 449–459 (2004).
  • Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol.6(5), 322–327 (2005).
  • Rivet J, Mourah S, Murata H et al. VEGF and VEGFR-1 are coexpressed by epithelial and stromal cells of renal cell carcinoma. Cancer112(2), 433–442 (2008).
  • Tawfik OW, Kramer B, Shideler B, Danley M, Kimler BF, Holzbeierlein J. Prognostic significance of CD44, platelet-derived growth factor receptor α, and cyclooxygenase 2 expression in renal cell carcinoma. Arch. Pathol. Lab. Med.131(2), 261–267 (2007).
  • Franovic A, Gunaratnam L, Smith K, Robert I, Patten D, Lee S. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc. Natl Acad. Sci. USA104(32), 13092–13097 (2007).
  • Xiao GH, Jeffers M, Bellacosa A et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc. Natl Acad. Sci. USA98(1), 247–252 (2001).
  • White MF. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem.182(1–2), 3–11 (1998).
  • Scheid MP, Woodgett JR. PKB/AKT: functional insights from genetic models. Nat. Rev. Mol. Cell Biol.2(10), 760–768 (2001).
  • Bellacosa A, Chan TO, Ahmed NN et al. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene17(3), 313–325 (1998).
  • Alessi DR, James SR, Downes CP et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol.7(4), 261–269 (1997).
  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature411(6835), 355–365 (2001).
  • Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell103(2), 253–262 (2000).
  • Thomas G, Hall MN. TOR signalling and control of cell growth. Curr. Opin. Cell Biol.9(6), 782–787 (1997).
  • Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov.5(8), 671–688 (2006).
  • Kim DH, Sarbassov DD, Ali SM et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell11(4), 895–904 (2003).
  • Kim DH, Sarbassov DD, Ali SM et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell110(2), 163–175 (2002).
  • Sarbassov DD, Ali SM, Kim DH et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol.14(14), 1296–1302 (2004).
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science307(5712), 1098–1101 (2005).
  • Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol. Med.11(8), 353–361 (2005).
  • Martin DE, Hall MN. The expanding TOR signaling network. Curr. Opin. Cell Biol.17(2), 158–166 (2005).
  • Garcia JA, Danielpour D. Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Mol. Cancer Ther.7(6), 1347–1354 (2008).
  • Manning BD, Cantley LC. United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem. Soc. Trans.31(Pt 3), 573–578 (2003).
  • Sancak Y, Thoreen CC, Peterson TR et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell25(6), 903–915 (2007).
  • Rosenwald IB, Kaspar R, Rousseau D et al. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem.270(36), 21176–21180 (1995).
  • Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor. Proc. Natl Acad. Sci. USA93(3), 1065–1070 (1996).
  • Hudson CC, Liu M, Chiang GG et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol.22(20), 7004–7014 (2002).
  • Toschi A, Lee E, Gadir N, Ohh M, Foster DA. Differential dependence of hypoxia-inducible factors 1α and 2α on mTORC1 and mTORC2. J. Biol. Chem.283(50), 34495–34499 (2008).
  • Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy. J. Clin. Oncol.23(23), 5386–5403 (2005).
  • Tremblay F, Gagnon A, Veilleux A, Sorisky A, Marette A. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in ‘3-L1 and human adipocytes. Endocrinology146(3), 1328–1337 (2005).
  • Jacinto E, Facchinetti V, Liu D et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell127(1), 125–137 (2006).
  • Schips L, Zigeuner R, Ratschek M, Rehak P, Ruschoff J, Langner C. Analysis of insulin-like growth factors and insulin-like growth factor I receptor expression in renal cell carcinoma. Am. J. Clin. Pathol.122(6), 931–937 (2004).
  • Cohen D, Lane B, Jin T et al. The prognostic significance of epidermal growth factor receptor expression in clear-cell renal cell carcinoma: a call for standardized methods for immunohistochemical evaluation. Clin. Genitourin. Cancer5(4), 264–270 (2007).
  • Gomella LG, Sargent ER, Wade TP, Anglard P, Linehan WM, Kasid A. Expression of transforming growth factor α in normal human adult kidney and enhanced expression of transforming growth factors α and β 1 in renal cell carcinoma. Cancer Res.49(24 Pt 1), 6972–6975 (1989).
  • Brenner W, Farber G, Herget T, Lehr HA, Hengstler JG, Thuroff JW. Loss of tumor suppressor protein PTEN during renal carcinogenesis. Int. J. Cancer99(1), 53–57 (2002).
  • Hager M, Haufe H, Kemmerling R, Mikuz G, Kolbitsch C, Moser PL. PTEN expression in renal cell carcinoma and oncocytoma and prognosis. Pathology39(5), 482–485 (2007).
  • Shin Lee J, Seok Kim H, Bok Kim Y, Cheol Lee M, Soo Park C. Expression of PTEN in renal cell carcinoma and its relation to tumor behavior and growth. J. Surg. Oncol.84(3), 166–172 (2003).
  • Uegaki K, Kanamori Y, Kigawa J et al. PTEN-positive and phosphorylated-Akt-negative expression is a predictor of survival for patients with advanced endometrial carcinoma. Oncol. Rep.14(2), 389–392 (2005).
  • Virolle T, Adamson ED, Baron V et al. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat. Cell Biol.3(12), 1124–1128 (2001).
  • Wang L, Wang WL, Zhang Y, Guo SP, Zhang J, Li QL. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol. Res.37(5), 389–396 (2007).
  • Velickovic M, Delahunt B, McIver B, Grebe SK. Intragenic PTEN/MMAC1 loss of heterozygosity in conventional (clear-cell) renal cell carcinoma is associated with poor patient prognosis. Mod. Pathol.15(5), 479–485 (2002).
  • Lee HY, Srinivas H, Xia D et al. Evidence that phosphatidylinositol 3-kinase- and mitogen-activated protein kinase kinase-4/c-Jun NH2-terminal kinase-dependent Pathways cooperate to maintain lung cancer cell survival. J. Biol. Chem.278(26), 23630–23638 (2003).
  • Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA102(23), 8204–8209 (2005).
  • Mak BC, Yeung RS. The tuberous sclerosis complex genes in tumor development. Cancer Invest.22(4), 588–603 (2004).
  • Koken MH, Linares-Cruz G, Quignon F et al. The PML growth-suppressor has an altered expression in human oncogenesis. Oncogene10(7), 1315–1324 (1995).
  • Bernardi R, Guernah I, Jin D et al. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR. Nature442(7104), 779–785 (2006).
  • Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr. Opin. Genet. Dev.17(1), 71–77 (2007).
  • Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem.270(3), 1230–1237 (1995).
  • Makino Y, Cao R, Svensson K et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature414(6863), 550–554 (2001).
  • Makino Y, Uenishi R, Okamoto K et al. Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells. J. Biol. Chem.282(19), 14073–14082 (2007).
  • Keith B, Adelman DM, Simon MC. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with ARNT. Proc. Natl Acad. Sci. USA98(12), 6692–6697 (2001).
  • Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature386(6623), 403–407 (1997).
  • Sarbassov DD, Ali SM, Sengupta S et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell22(2), 159–168 (2006).
  • Jiang X, Kenerson H, Aicher L et al. The tuberous sclerosis complex regulates trafficking of glucose transporters and glucose uptake. Am. J. Pathol.172(6), 1748–1756 (2008).
  • Mason SD, Rundqvist H, Papandreou I et al. HIF-1α in endurance training: suppression of oxidative metabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol.293(5), R2059–R2069 (2007).
  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab.3(3), 177–185 (2006).
  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab.3(3), 187–197 (2006).
  • Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature425(6955), 307–311 (2003).
  • Leufgen H, Bihl MP, Rudiger JJ et al. Collagenase expression and activity is modulated by the interaction of collagen types, hypoxia, and nutrition in human lung cells. J. Cell. Physiol.204(1), 146–154 (2005).
  • Erler JT, Bennewith KL, Nicolau M et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature440(7088), 1222–1226 (2006).
  • Covello KL, Kehler J, Yu H et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev.20(5), 557–570 (2006).
  • Yoshimura H, Dhar DK, Kohno H et al. Prognostic impact of hypoxia-inducible factors 1α and 2α in colorectal cancer patients: correlation with tumor angiogenesis and cyclooxygenase-2 expression. Clin. Cancer Res..10(24), 8554–8560 (2004).
  • Levitzki A. PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases. Cytokine Growth Factor Rev.15(4), 229–235 (2004).
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer3(10), 721–732 (2003).
  • Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J.23(9), 1949–1956 (2004).
  • Dimmeler S, Zeiher AM. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ. Res.87(6), 434–439 (2000).
  • Stoeltzing O, Meric-Bernstam F, Ellis LM. Intracellular signaling in tumor and endothelial cells: the expected and, yet again, the unexpected. Cancer Cell10(2), 89–91 (2006).
  • Gerber HP, McMurtrey A, Kowalski J et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3´-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem.273(46), 30336–30343 (1998).
  • Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J16(8), 771–780 (2002).
  • Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest.112(8), 1142–1151 (2003).
  • Dormond O, Madsen JC, Briscoe DM. The effects of mTOR-Akt interactions on anti-apoptotic signaling in vascular endothelial cells. J. Biol. Chem.282(32), 23679–23686 (2007).
  • Phung TL, Ziv K, Dabydeen D et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell10(2), 159–170 (2006).
  • Hay N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell8(3), 179–183 (2005).
  • Guba M, von Breitenbuch P, Steinbauer M et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med8(2), 128–135 (2002).
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307(5706), 58–62 (2005).
  • Balcarcel RR, Stephanopoulos G. Rapamycin reduces hybridoma cell death and enhances monoclonal antibody production. Biotechnol Bioeng76(1), 1–10 (2001).
  • Yatscoff RW, LeGatt DF, Kneteman NM. Therapeutic monitoring of rapamycin: a new immunosuppressive drug. Ther. Drug Monit.15(6), 478–482 (1993).
  • Sousa JE, Sousa AG, Costa MA, Abizaid AC, Feres F. Use of rapamycin-impregnated stents in coronary arteries. Transplant. Proc.35(Suppl. 3), 165S–170S (2003).
  • Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol.16(4), 525–537 (2005).
  • Hudes G, Carducci M, Tomczak P et al. Temsirolimus, interferon α, or both for advanced renal-cell carcinoma. N. Engl. J. Med., 356(22), 2271–2281 (2007).
  • Mekhail TM, Abou-Jawde RM, Boumerhi G et al. Validation and extension of the Memorial Sloan-Kettering prognostic factors model for survival in patients with previously untreated metastatic renal cell carcinoma. J. Clin. Oncol.23(4), 832–841 (2005).
  • Dutcher JP, Szczylik C, Tannir NM et al. Correlation of survival with tumor histology, age, and prognostic risk group for previously untreated patients with advanced renal cell carcinoma (adv RCC) receiving temsirolimus (TEMSR) or interferon-α (IFN). J. Clin. Oncol.2007 ASCO Annual Meeting Proceedings, 25(18S) (2007) (Abstract 5033).
  • Logan TF, McDermott D, Dutcher JP, Makhson A, Mikulas J. Exploratory analysis of the influence of nephrectomy status on temsirolimus efficacy in patients with advanced renal cell carcinoma and poor-risk features. J. Clin. Oncol.2008 ASCO Annual Meeting Proceedings26(15S) (2008) (Abstract 5050).
  • Jac J, Giessinger SK, Wills J, Chiang S. A Phase II trial of RAD001 in patients (Pts) with metastatic renal cell carcinoma (MRCC). J. Clin. Oncol. J. Clin. Oncol.2007 ASCO Annual Meeting Proceedings25(18S) (2007) (Abstract 5107)
  • Motzer RJ, Escudier B, Oudard S et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled Phase III trial. Lancet372(9637), 449–456 (2008).
  • Figlin RA, Hutson TE, Tomczak P, Michaelson MD, Bukowski R, Negrier S. Overall survival with sunitinib versus interferon (IFN)-α as first-line treatment of metastatic renal cell carcinoma (mRCC). J. Clin. Oncol.26(15S) (Abstract 5024) (2008).
  • Cho D, Signoretti S, Dabora S et al. Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin. Genitourin Cancer5(6), 379–385 (2007).
  • Wysocki PJ, Kwiatkowska EP, Kazimierczak U, Suchorska W, Kowalczyk DW, Mackiewicz A. Captopril, an angiotensin-converting enzyme inhibitor, promotes growth of immunogenic tumors in mice. Clin. Cancer Res.12(13), 4095–4102 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.