373
Views
44
CrossRef citations to date
0
Altmetric
Review

Systematic antibody and antigen-based proteomic profiling with microarrays

, , , , , & show all
Pages 219-234 | Published online: 09 Jan 2014

References

  • Hanash S. Disease proteomics. Nature422, 226–232 (2003).
  • Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics6(23), 6326–6353 (2006).
  • Ahn S-M, Simpson RJ. Body fluid proteomics: prospects for biomarker discovery. Proteomics Clin. Appl.1(9), 1004–1015 (2007).
  • von Neuhoff N, Pich A. Mass spectrometry-based methods for biomarker detection and analysis. Drug Discov. Today Technol.2(4), 361–367 (2005).
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science312(5771), 212–217 (2006).
  • Cravatt BF, Simon GM, Yates JR 3rd. The biological impact of mass-spectrometry-based proteomics. Nature450(7172), 991–1000 (2007).
  • Canas B, Lopez-Ferrer D, Ramos-Fernandez A, Camafeita E, Calvo E. Mass spectrometry technologies for proteomics. Brief Funct. Genomic. Proteomic.4(4), 295–320 (2006).
  • Zhao Y, Lee W-NP, Xiao GG. Quantitative proteomics and biomarker discovery in human cancer. Expert Rev. Proteomics6(2), 115–118 (2009).
  • Silberring J, Ciborowski P. Biomarker discovery and clinical proteomics. Trends Analyt. Chem.29(2), 128–128 (2010).
  • Schiess R, Wollscheid B, Aebersold R. Targeted proteomic strategy for clinical biomarker discovery. Mol. Oncol.3(1), 33–44 (2009).
  • Kulasingam V, Diamandis EP. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol.5(10), 588–599 (2008).
  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotech.24(8), 971–983 (2006).
  • Hellström M, Jonmarker S, Lehtiö J, Auer G, Egevad L. Proteomics in clinical prostate research. Proteomics Clin. Appl.1(9), 1058–1065 (2007).
  • Steuber T, Helo P, Lilja H. Circulating biomarkers for prostate cancer. World J. Urol.25(2), 111–119 (2007).
  • Birkhahn M, Mitra AP, Cote RJ. Molecular markers for bladder cancer: the road to a multimarker approach. Expert Rev. Anticancer Ther.7(12), 1717–1727 (2007).
  • Ikonomidis I, Michalakeas CA, Lekakis J, Paraskevaidis I, Kremastinos DT. Multimarker approach in cardiovascular risk prediction. Dis. Markers26(5), 273–285 (2009).
  • Ekins RP. Multi-analyte immunoassay. J. Pharm. Biomed. Anal.7(2), 155–168 (1989).
  • MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science289(5485), 1760–1763 (2000).
  • Templin MF, Stoll D, Schwenk JM et al. Protein microarrays: promising tools for proteomic research. Proteomics3(11), 2155–2166 (2003).
  • Fulton RJ, McDade RL, Smith PL, Kienker LJ. Advanced multiplexed analysis with the FlowMetrix. Clin. Chem.1756, 1749–1756 (1997).
  • Wu W, Slastad H, de la Rosa Carrillo D et al. Antibody array analysis with label-based detection and resolution of protein size. Mol. Cell Proteomics8(2), 245–257 (2009).
  • Templin MF, Stoll D, Bachmann J, Joos TO. Protein microarrays and multiplexed sandwich immunoassays: what beats the beads? Comb. Chem. High Throughput Screen.7(3), 223–229 (2004).
  • Stoevesandt O, Taussig MJ, He M. Protein microarrays: high-throughput tools for proteomics. Expert Rev. Proteomics6(2), 145–157 (2009).
  • Paulovich AG, Whiteaker JR, Hoofnagle AN, Wang P. The interface between biomarker discovery and clinical validation: the tar pit of the protein biomarker pipeline. Proteomics Clin. Appl.2(10–11), 1386–1402 (2008).
  • Polanski M, Anderson NL, Polanski M, Anderson NL. A list of candidate cancer biomarkers for targeted proteomics. Biomark. Insights7(1), 1–48 (2007).
  • Haab BB, Dunham MJ, Brown PO. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol.2(2), RESEARCH0004 (2001).
  • Poetz O, Schwenk JM, Kramer S et al. Protein microarrays: catching the proteome. Mech. Ageing Dev.126(1), 161–170 (2005).
  • Haab BB. Methods and applications of antibody microarrays in cancer research. Proteomics3(11), 2116–2122 (2003).
  • Yu X, Schneiderhan-Marra N, Joos TO. Protein microarrays for personalized medicine. Clin. Chem.56(3), 376–387 (2010).
  • Falk R, Ramstrom M, Stahl S, Hober S. Approaches for systematic proteome exploration. Biomol. Eng.24(2), 155–168 (2007).
  • Tomizaki KY, Usui K, Mihara H. Protein-detecting microarrays: current accomplishments and requirements. Chembiochem.6(5), 782–799 (2005).
  • De Jager W, Te Velthuis H, Prakken BJ, Kuis W, Rijkers GT. Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin. Diagn. Lab. Immunol.10(1), 133–139 (2003).
  • Hsu HY, Wittemann S, Joos TO. Miniaturized parallelized sandwich immunoassays. Methods Mol. Biol.428, 247–261 (2008).
  • Poetz O, Henzler T, Hartmann M et al. Sequential multiplex analyte capturing for phospho-protein profiling. Mol. Cell Proteomics DOI: 10.1074/mcp.M110.002709 (2010) (Epub ahead of print).
  • Kingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov.5(4), 310–320 (2006).
  • Darmanis S, Nong RY, Hammond M et al. Sensitive plasma protein analysis by microparticle-based proximity ligation assays. Mol. Cell Proteomics9(2), 327–335 (2010).
  • Schallmeiner E, Oksanen E, Ericsson O et al. Sensitive protein detection via triple-binder proximity ligation assays. Nat. Methods4(2), 135–137 (2007).
  • Rissin DM, Kan CW, Campbell TG et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol.28(6), 595–599 (2010).
  • Wingren C, Borrebaeck CA. Antibody microarray analysis of directly labelled complex proteomes. Curr. Opin. Biotechnol.19(1), 55–61 (2008).
  • Kusnezow W, Banzon V, Schroder C et al. Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies. Proteomics7(11), 1786–1799 (2007).
  • Schroder C, Jacob A, Tonack S et al. Dual-color proteomic profiling of complex samples with a microarray of 810 cancer-related antibodies. Mol. Cell Proteomics9(6), 1271–1280 (2010).
  • Schwenk JM, Gry M, Rimini R, Uhlen M, Nilsson P. Antibody suspension bead arrays within serum proteomics. J. Proteome Res.7(8), 3168–3179 (2008).
  • Schwenk JM, Igel U, Neiman M et al. Towards next generation plasma profiling via heat-induced epitope retrieval and array-based assays. Mol. Cell Proteomics (2010).
  • Uhlén M. Affinity as a tool in life science. Biotechniques44(5), 649–654 (2008).
  • Taussig MJ, Stoevesandt O, Borrebaeck CA et al. ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat. Methods4(1), 13–17 (2007).
  • Bjorling E, Uhlen M. Antibodypedia, a portal for sharing antibody and antigen validation data. Mol. Cell Proteomics7(10), 2028–2037 (2008).
  • Berglund L, Bjorling E, Oksvold P et al. A genecentric human protein atlas for expression profiles based on antibodies. Mol. Cell Proteomics7(10), 2019–2027 (2008).
  • Schofield DJ, Pope AR, Clementel V et al. Application of phage display to high throughput antibody generation and characterization. Genome Biol.8(11), R254 (2007).
  • Uhlen M, Graslund S, Sundstrom M. A pilot project to generate affinity reagents to human proteins. Nat. Methods5(10), 854–855 (2008).
  • Haab BB, Paulovich AG, Anderson NL et al. A reagent resource to identify proteins and peptides of interest for the cancer community: a workshop report. Mol. Cell Proteomics5(10), 1996–2007 (2006).
  • De Masi F, Chiarella P, Wilhelm H et al. High throughput production of mouse monoclonal antibodies using antigen microarrays. Proteomics5(16), 4070–4081 (2005).
  • Rieger M, Cervino C, Sauceda JC, Niessner R, Knopp D. Efficient hybridoma screening technique using capture antibody based microarrays. Anal. Chem.81(6), 2373–2377 (2009).
  • Uhlen M, Björling E, Agaton C et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell Proteomics4(12), 1920–1932 (2005).
  • Pontén F, Jirström K, Uhlén M. The Human Protein Atlas – a tool for pathology. J. Pathol.216(4), 387–393 (2008).
  • Nilsson P, Paavilainen L, Larsson K et al. Towards a human proteome atlas: high-throughput generation of mono-specific antibodies for tissue profiling. Proteomics5(17), 4327–4337 (2005).
  • Schwenk JM, Igel U, Kato BS et al. Comparative protein profiling of serum and plasma using an antibody suspension bead array approach. Proteomics10(3), 532–540 (2010).
  • Rockberg J, Lofblom J, Hjelm B, Uhlen M, Stahl S. Epitope mapping of antibodies using bacterial surface display. Nat. Methods5(12), 1039–1045 (2008).
  • Rockberg J, Schwenk JM, Uhlen M. Discovery of epitopes for targeting the human epidermal growth factor receptor 2 (HER2) with antibodies. Mol Oncol. DOI: 10.1016/j.molonc.2009.01.003 (2009) (Epub ahead of print).
  • Pansri P, Jaruseranee N, Rangnoi K, Kristensen P, Yamabhai M. A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol.9, 6 (2009).
  • Kwong KY, Baskar S, Zhang H, Mackall CL, Rader C. Generation, affinity maturation, and characterization of a human anti-human NKG2D monoclonal antibody with dual antagonistic and agonistic activity. J. Mol. Biol.384(5), 1143–1156 (2008).
  • Schoonbroodt S, Steukers M, Viswanathan M et al. Engineering antibody heavy chain CDR3 to create a phage display Fab library rich in antibodies that bind charged carbohydrates. J. Immunol.181(9), 6213–6221 (2008).
  • Yang HY, Kang KJ, Chung JE, Shim H. Construction of a large synthetic human scFv library with six diversified CDRs and high functional diversity. Mol. Cells27(2), 225–235 (2009).
  • Zhao XL, Chen WQ, Yang ZH et al. Selection and affinity maturation of human antibodies against rabies virus from a scFv gene library using ribosome display. J. Biotechnol.144(4), 253–258 (2009).
  • Kronqvist N, Lofblom J, Jonsson A, Wernerus H, Stahl S. A novel affinity protein selection system based on staphylococcal cell surface display and flow cytometry. Protein Eng. Des. Sel.21(4), 247–255 (2008).
  • Walker LM, Bowley DR, Burton DR. Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J. Mol. Biol.389(2), 365–375 (2009).
  • Nord K, Gunneriusson E, Ringdahl J et al. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol.15(8), 772–777 (1997).
  • Lofblom J, Feldwisch J, Tolmachev V et al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett.584(12), 2670–2680 (2010).
  • Brody EN, Gold L. Aptamers as therapeutic and diagnostic agents. J. Biotechnol.74(1), 5–13 (2000).
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science249(4968), 505–510 (1990).
  • Rowe W, Platt M, Day PJ. Advances and perspectives in aptamer arrays. Integr. Biol. (Camb.)1(1), 53–58 (2009).
  • Ostroff R, Foreman T, Keeney TR et al. The stability of the circulating human proteome to variations in sample collection and handling procedures measured with an aptamer-based proteomics array. J. Proteomics73(3), 649–666 (2010).
  • Zahnd C, Wyler E, Schwenk JM et al. A designed ankyrin repeat protein evolved to picomolar affinity to HER2. J. Mol. Biol.369(4), 1015–1028 (2007).
  • Bossi A, Bonini F, Turner AP, Piletsky SA. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron.22(6), 1131–1137 (2007).
  • Katrlik J, Svitel J, Gemeiner P, Kozar T, Tkac J. Glycan and lectin microarrays for glycomics and medicinal applications. Med. Res. Rev.30(2), 394–418 (2010).
  • Uttamchandani M, Walsh DP, Yao SQ, Chang YT. Small molecule microarrays: recent advances and applications. Curr. Opin. Chem. Biol.9(1), 4–13 (2005).
  • Tegel H, Steen J, Konrad A et al. High-throughput protein production – lessons from scaling up from 10 to 288 recombinant proteins per week. Biotechnology J.4(1), 51–57 (2009).
  • Gräslund S, Nordlund P, Weigelt J, Hallberg BM. Protein production and purification. Nat. Methods5(2), 135–146 (2008).
  • Wang X, Liu J, Zheng Y et al. An optimized yeast cell-free system: sufficient for translation of human papillomavirus 58 L1 mRNA and assembly of virus-like particles. J. Biosci. Bioeng.106(1), 8–15 (2008).
  • Goshima N, Kawamura Y, Fukumoto A et al. Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat. Methods5(12), 1011–1017 (2008).
  • Hino M, Kataoka M, Kajimoto K et al. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes. J. Biotechnol.133(2), 183–189 (2008).
  • Chandra H, Srivastava S. Cell-free synthesis-based protein microarrays and their applications. Proteomics10(4), 717–730 (2010).
  • Schwarz D, Dotsch V, Bernhard F. Production of membrane proteins using cell-free expression systems. Proteomics8(19), 3933–3946 (2008).
  • Katzen F, Peterson TC, Kudlicki W. Membrane protein expression: no cells required. Trends Biotechnol.27(8), 455–460 (2009).
  • He M. Cell-free protein synthesis: applications in proteomics and biotechnology. N. Biotechnol.25(2–3), 126–132 (2008).
  • Robinson WH. Antigen arrays for antibody profiling. Curr. Opin. Chem. Biol.10(1), 67–72 (2006).
  • Zhu H, Hu SH, Jona G et al. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc. Natl Acad. Sci. USA103(11), 4011–4016 (2006).
  • Xu Y, Bruno JF, Luft BJ. Profiling the humoral immune response to Borrelia burgdorferi infection with protein microarrays. Microb. Pathog.45(5–6), 403–407 (2008).
  • Beare PA, Chen C, Bouman T et al. Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin. Vaccine Immunol.15(12), 1771–1779 (2008).
  • Montor WR, Huang J, Hu Y et al. Genome-wide study of Pseudomonas aeruginosa outer membrane protein immunogenicity using self-assembling protein microarrays. Infect. Immun.77(11), 4877–4886 (2009).
  • Doolan DL, Mu Y, Unal B et al. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics8(22), 4680–4694 (2008).
  • Crompton PD, Kayala MA, Traore B et al. A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc. Natl Acad. Sci. USA107(15), 6958–6963 (2010).
  • Davies DH, Liang X, Hernandez JE et al. Profiling the humoral immune response to infection by using proteome microarrays: High-throughput vaccine and diagnostic antigen discovery. Proc. Natl Acad. Sci. USA102(3), 547–552 (2005).
  • Vigil A, Davies DH, Felgner PL. Defining the humoral immune response to infectious agents using high-density protein microarrays. Future Microbiol.5(2), 241–251 (2010).
  • Lueking A, Huber O, Wirths C et al. Profiling of alopecia areata autoantigens based on protein microarray technology. Mol. Cell Proteomics4(9), 1382–1390 (2005).
  • Hueber W, Kidd BA, Tomooka BH, Lee BJ. Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum.52(9), 2645–2655 (2005).
  • Hueber W, Tomooka B, Batliwalla F et al. Blood autoantibody and cytokine profiles predict response to anti-tumor necrosis factor therapy in rheumatoid arthritis. Arthritis Res. Ther.11(3), R76 (2009).
  • Horn S, Lueking A, Murphy D et al. Profiling humoral autoimmune repertoire of dilated cardiomyopathy (DCM) patients and development of a disease-associated protein chip. Proteomics6(2), 605–613 (2006).
  • Quintana FJ, Farez MF, Viglietta V et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc. Natl Acad. Sci. USA105(48), 18889–18894 (2008).
  • Song Q, Liu G, Hu S et al. Novel autoimmune hepatitis-specific autoantigens identified using protein microarray technology. J. Proteome Res.9(1), 30–39 (2010).
  • Balboni I, Chan SM, Kattah M, Tenenbaum JD. Multiplexed protein array platforms for analysis of autoimmune diseases. Annu. Rev. Immunol.24, 391–418 (2006).
  • Chen G, Wang X, Yu J et al. Autoantibody profiles reveal ubiquilin 1 as a humoral immune response target in lung adenocarcinoma. Cancer Res.67(7), 3461–3467 (2007).
  • Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc. Natl Acad. Sci. USA104(44), 17494–17499 (2007).
  • Anderson KS, Ramachandran N, Wong J et al. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J. Proteome Res.7(4), 1490–1499 (2008).
  • Babel I, Barderas R, Díaz-Uriarte R, Martínez-Torrecuadrada JL, Sánchez-Carbayo M, Casal JI. Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays. Mol. Cell Proteomics8(10), 2382–2395 (2009).
  • Gnjatic S, Ritter E, Büchler MW et al. Seromic profiling of ovarian and pancreatic cancer. Proc. Natl Acad. Sci. USA107(11), 5088–5093 (2010).
  • Chatterjee M, Wojciechowski J, Tainsky MA. Discovery of antibody biomarkers using protein microarrays of tumor antigens cloned in high throughput. Methods Mol. Biol.520, 21–38 (2009).
  • Kijanka G, Murphy D. Protein arrays as tools for serum autoantibody marker discovery in cancer. J. Proteomics72(6), 936–944 (2009).
  • Tan HT, Low J, Lim SG, Chung MC. Serum autoantibodies as biomarkers for early cancer detection. FEBS J.276(23), 6880–6904 (2009).
  • Caron M, Choquet-Kastylevsky GV, Joubert-Caron R. Cancer immunomics using autoantibody signatures for biomarker discovery. Mol. Cell Proteomics6(7), 1115–1122 (2007).
  • Zhang J-Y, Tan EM. Autoantibodies to tumor-associated antigens as diagnostic biomarkers in hepatocellular carcinoma and other solid tumors. Expert Rev. Mol. Diag.10(3), 321–328 (2010).
  • Wang X, Yu J, Sreekumar A et al. Autoantibody signatures in prostate cancer. N. Engl. J. Med.353(12), 1224–1235 (2005).
  • Qiu J, Choi G, Li L et al. Occurrence of autoantibodies to annexin I, 14–13-3 τ and LAMR1 in prediagnostic lung cancer sera. J. Clin. Oncol.26(31), 5060–5066 (2008).
  • Gibson DS, Banha J, Penque D et al. Diagnostic and prognostic biomarker discovery strategies for autoimmune disorders. J. Proteomics73(6), 1045–1060 (2010).
  • Kalbas M, Lueking A, Kowald A, Muellner S. New analytical tools for studying autoimmune diseases. Curr. Pharm. Des.12, 3735–3742 (2006).
  • Tozzoli R. Recent advances in diagnostic technologies and their impact in autoimmune diseases. Autoimmun. Rev.6(6), 334–340 (2007).
  • Andresen H, Grotzinger C. Deciphering the antibodyome – peptide arrays for serum antibody biomarker diagnostics. Curr. Proteomics6, 1–12 (2009).
  • Prechl J, Papp KN, Erdei A. Antigen microarrays: descriptive chemistry or functional immunomics? Trends Immunol.31(4), 133–137 (2010).
  • Madi A, Hecht I, Bransburg-Zabary S et al. Organization of the autoantibody repertoire in healthy newborns and adults revealed by system level informatics of antigen microarray data. Proc. Natl Acad. Sci. USA106(34), 14484–14489 (2009).
  • He M, Stoevesandt O, Taussig MJ. In situ synthesis of protein arrays. Curr. Opin. Biotech.19(1), 4–9 (2008).
  • He M, Liu H, Turner M, Taussig MJ. Detection of protein–protein interactions by ribosome display and protein in situ immobilisation. N. Biotechnol.26(6), 277–281 (2009).
  • Ramachandran N, Raphael JV, Hainsworth E et al. Next-generation high-density self-assembling functional protein arrays. Nat. Methods5(6), 535–538 (2008).
  • He M, Stoevesandt O, Palmer EA et al. Printing protein arrays from DNA arrays. Nat. Methods5(2), 175–177 (2008).
  • Wong J, Sibani S, Lokko NN, LaBaer J, Anderson KS. Rapid detection of antibodies in sera using multiplexed self-assembling bead arrays. J. Immunol. Methods350(1–2), 171–182 (2009).
  • Cretich M, Damin F, Pirri G, Chiari M. Protein and peptide arrays: recent trends and new directions. Biomol. Eng.23(2–3), 77–88 (2006).
  • Henderson G, Bradley M. Functional peptide arrays for high-throughput chemical biology based applications. Curr. Opin. Biotechnol.18(4), 326–330 (2007).
  • Hilpert K, Winkler DF, Hancock RE. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat. Protoc.2(6), 1333–1349 (2007).
  • Poetz O, Ostendorp R, Brocks B et al. Protein microarrays for antibody profiling: specificity and affinity determination on a chip. Proteomics5(9), 2402–2411 (2005).
  • Chiari M, Cretich M, Corti A et al. Peptide microarrays for the characterization of antigenic regions of human chromogranin A. Proteomics5(14), 3600–3603 (2005).
  • Flinterman AE, Knol EF, Lencer DA et al. Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy. J. Allergy Clin. Immunol.121(3), 737–743 (2008).
  • Lottersberger J, Guerrero SA, Tonarelli GG et al. Epitope mapping of pathogenic Leptospira LipL32. Lett. Appl. Microbiol.49(5), 641–645 (2009).
  • Lin J, Bardina L, Shreffler WG et al. Development of a novel peptide microarray for large-scale epitope mapping of food allergens. J. Allergy Clin. Immunol.124(2), 315–322, 322 e1–3 (2009).
  • Larsson K, Eriksson C, Schwenk JM et al. Characterization of PrEST-based antibodies towards human cytokeratin-17. J. Immunol. Methods342(1–2), 20–32 (2009).
  • Hjelm B, Fernandez CD, Lofblom J et al. Exploring epitopes of antibodies toward the human tryptophanyl-tRNA synthetase. N. Biotechnol.27(2), 129–137 (2010).
  • Hilhorst R, Houkes L, van den Berg A, Ruijtenbeek R. Peptide microarrays for detailed, high-throughput substrate identification, kinetic characterization, and inhibition studies on protein kinase A. Anal. Biochem.387(2), 150–161 (2009).
  • Schutkowski M, Reimer U, Panse S et al. High-content peptide microarrays for deciphering kinase specificity and biology. Angew Chem. Int. Ed. Engl.43(20), 2671–2674 (2004).
  • Uttamchandani M, Yao SQ. Peptide microarrays: next generation biochips for detection, diagnostics and high-throughput screening. Curr. Pharm. Des.14, 2428–2438 (2008).
  • Breitling F, Felgenhauer T, Nesterov A et al. Particle-based synthesis of peptide arrays. Chembiochem.10(5), 803–808 (2009).
  • Breitling F, Nesterov A, Stadler V, Felgenhauer T, Bischoff FR. High-density peptide arrays. Mol. Biosyst.5(3), 224–234 (2009).
  • Spurrier B, Honkanen P, Holway A et al. Protein and lysate array technologies in cancer research. Biotechnol. Adv.26(4), 361–369 (2008).
  • Paweletz C, Charboneau L, Bichsel V, Simone N. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene20(16), 1981–1989 (2001).
  • Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO. Protein microarrays for diagnostic assays. Anal. Bioanal. Chem.393(5), 1407–1416 (2009).
  • Nishizuka S, Charboneau L, Young L et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl Acad. Sci. USA100(24), 14229–14234 (2003).
  • Sheehan KM, Calvert VS, Kay EW et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell Proteomics4(4), 346–355 (2005).
  • Akkiprik M, Nicorici D, Cogdell D et al. Dissection of signaling pathways in fourteen breast cancer cell lines using reverse-phase protein lysate microarray. Technol. Cancer Res. Treat.5(6), 543–551 (2006).
  • Boyd ZS, Wu QJ, O’Brien C et al. Proteomic analysis of breast cancer molecular subtypes and biomarkers of response to targeted kinase inhibitors using reverse-phase protein microarrays. Mol. Cancer Ther.7(12), 3695–3706 (2008).
  • Janzi M, Ödling J, Pan-Hammarstrom Q et al. Serum microarrays for large scale screening of protein levels. Mol. Cell Proteomics4(12), 1942–1947 (2005).
  • Caiazzo Jr RJ, Maher AJ, Drummond MP et al. Protein microarrays as an application for disease biomarkers. Proteomics Clin. Appl., 3(2), 138–147 (2009).
  • Grote T, Siwak DR, Fritsche HA et al. Validation of reverse phase protein array for practical screening of potential biomarkers in serum and plasma: accurate detection of CA19–9 levels in pancreatic cancer. Proteomics8(15), 3051–3060 (2008).
  • Aguilar-Mahecha A, Cantin C, O’Connor-McCourt M, Nantel A, Basik M. Development of reverse phase protein microarrays for the validation of clusterin, a mid-abundant blood biomarker. Proteome Sci.7, 15 (2009).
  • Srivastava M, Eidelman O, Jozwik C et al. Serum proteomic signature for cystic fibrosis using an antibody microarray platform. Mol. Genet. Metab.87(4), 303–310 (2006).
  • Mircean C, Shmulevich I, Cogdell D et al. Robust estimation of protein expression ratios with lysate microarray technology. Bioinformatics21(9), 1935–1942 (2005).
  • Janzi M, Sjöberg R, Wan J et al. Screening for C3 deficiency in newborns using microarrays. PLOS One4(4), e5321–e5321 (2009).
  • Janzi M, Kull I, Sjöberg R et al. Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin. Immunol.133(1), 78–85 (2009).
  • Hultschig C, Kreutzberger J, Seitz H et al. Recent advances of protein microarrays. Curr. Opin. Chem. Biol.10(1), 4–10 (2006).
  • Ramachandran N, Srivastava S, LaBaer J. Applications of protein microarrays for biomarker discovery. Proteomics Clin. Appl.2(10–11), 1444–1459 (2008).
  • Pawlak M, Schick E, Bopp MA et al. Zeptosens’ protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics2(4), 383–393 (2002).
  • Weissenstein U, Schneider MJ, Pawlak M et al. Protein chip based miniaturized assay for the simultaneous quantitative monitoring of cancer biomarkers in tissue extracts. Proteomics6(5), 1427–1436 (2006).
  • Oostrum Jv, Calonder C, Rechsteiner D et al. Tracing pathway activities with kinase inhibitors and reverse phase protein arrays. Proteomics Clin. Appl.3(4), 412–422 (2009).
  • Voshol H, Ehrat M, Traenkle J, Bertrand E, Oostrum JV. Antibody-based proteomics – analysis of signaling networks using reverse protein arrays. FEBS J.276(23), 6871–6879 (2009).
  • Pirnia F, Pawlak M, Thallinger GG et al. Novel functional profiling approach combining reverse phase protein microarrays and human 3-D ex vivo tissue cultures: expression of apoptosis-related proteins in human colon cancer. Proteomics9(13), 3535–3548 (2009).
  • Escher C, Lochmuller H, Fischer D et al. Reverse protein arrays as novel approach in muscular dystrophies. Neuromusc. Disord.20(5), 302–309 (2010).
  • Liumbruno G, D’Alessandro A, Grazzini G, Zolla L. Blood-related proteomics. J. Proteomics73(3), 483–507 (2010).
  • Anderson NL, Anderson NG. The human plasma proteome – history, character, and diagnostic prospects. Mol. Cell Proteomics1(11), 845–867 (2002).
  • Anderson NL, Polanski M, Pieper R et al. The human plasma proteome – a nonredundant list developed by combination of four separate sources. Mol. Cell Proteomics3(4), 311–326 (2004).
  • Omenn GS, States DJ, Adamski M et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics5(13), 3226–3245 (2005).
  • States DJ, Omenn GS, Blackwell TW et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat. Biotechnol.24(3), 333–338 (2006).
  • Mitchell BL, Yasui Y, Li CI, Fitzpatrick AL, Lampe PD. Impact of freeze–thaw cycles and storage time on plasma samples used in mass spectrometry based biomarker discovery projects. Cancer Inform.1, 98–104 (2005).
  • Hsieh SY, Chen RK, Pan YH, Lee HL. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics6(10), 3189–3198 (2006).
  • Alesci S, Borggrefe M, Dempfle C-E. Effect of freezing method and storage at -20°C and -70°C on prothrombin time, aPTT and plasma fibrinogen levels. Thrombosis Res.124(1), 121–126 (2009).
  • Gustaw KA, Garrett MR, Lee HG et al. Antigen–antibody dissociation in Alzheimer disease: a novel approach to diagnosis. J. Neurochem.106(3), 1350–1356 (2008).
  • Floriano PN, Christodoulides N, Miller CS et al. Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: a feasibility study. Clin. Chem.55(8), 1530–1538 (2009).
  • Radziejewska I, Kisiel DG, Borzym-Kluczyk M et al. MUC 1 mucin content in gastric juice of duodenal ulcer patients: effect of Helicobacter pylori eradication therapy. Clin. Exp. Med.7(2), 72–76 (2007).
  • Spurr-Michaud S, Argueso P, Gipson I. Assay of mucins in human tear fluid. Exp. Eye Res.84(5), 939–950 (2007).
  • Sunita T, Dubey ML, Khurana S, Malla N. Specific antibody detection in serum, urine and saliva samples for the diagnosis of cystic echinococcosis. Acta Trop.101(3), 187–191 (2007).
  • Regeniter A, Kuhle J, Mehling M et al. A modern approach to CSF analysis: pathophysiology, clinical application, proof of concept and laboratory reporting. Clin. Neurol. Neurosurg.111(4), 313–318 (2009).
  • Johanson CE, Duncan JA 3rd, Klinge PM et al. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res.5, 10 (2008).
  • Tsuji-Akimoto S, Yabe I, Niino M, Kikuchi S, Sasaki H. Cystatin C in cerebrospinal fluid as a biomarker of ALS. Neurosci. Lett.452(1), 52–55 (2009).
  • Somers V, Govarts C, Somers K et al. Autoantibody profiling in multiple sclerosis reveals novel antigenic candidates. J. Immunol.180(6), 3957–3963 (2008).
  • Dihazi H, Muller GA, Lindner S et al. Characterization of diabetic nephropathy by urinary proteomic analysis: identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clin. Chem.53(9), 1636–1645 (2007).
  • Irmak S, Tilki D, Heukeshoven J et al. Stage-dependent increase of orosomucoid and zinc-α2-glycoprotein in urinary bladder cancer. Proteomics5(16), 4296–4304 (2005).
  • Theodorescu D, Wittke S, Ross MM et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol.7(3), 230–240 (2006).
  • Theodorescu D, Schiffer E, Bauer HW et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin. Appl.2(4), 556–570 (2008).
  • Decramer S, Gonzalez de Peredo A, Breuil B et al. Urine in clinical proteomics. Mol. Cell Proteomics7(10), 1850–1862 (2008).
  • Barratt J, Topham P. Urine proteomics: the present and future of measuring urinary protein components in disease. CMAJ177(4), 361–368 (2007).
  • Schwenk JM, Stoll D, Templin MF, Joos TO. Cell microarrays: an emerging technology for the characterization of antibodies. Biotechniques (Suppl.) 54–61 (2002).
  • Hart T, Zhao A, Garg A, Bolusani S, Marcotte EM. Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays. PLOS One4(10), e7088 (2009).
  • Stromberg S, Bjorklund MG, Asplund C et al. A high-throughput strategy for protein profiling in cell microarrays using automated image analysis. Proteomics7(13), 2142–2150 (2007).
  • Kononen J, Bubendorf L, Kallioniemi A et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med.4(7), 844–847 (1998).
  • Xu BJ. Combining laser capture microdissection and proteomics: methodologies and clinical applications. Proteom. Clin. Appl.4(2), 116–123 (2010).
  • Knezevic V, Leethanakul C, Bichsel VE et al. Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics1(10), 1271–1278 (2001).
  • Barelli S, Crettaz D, Thadikkaran L, Rubin O, Tissot JD. Plasma/serum proteomics: pre-analytical issues. Expert Rev. Proteomics4(3), 363–370 (2007).
  • Bjorhall K, Miliotis T, Davidsson P. Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples. Proteomics5(1), 307–317 (2005).
  • Whiteaker JR, Zhang H, Eng JK et al. Head-to-head comparison of serum fractionation techniques. J. Proteome Res.6(2), 828–836 (2007).
  • Pernemalm M, Lewensohn R, Lehtio J. Affinity prefractionation for MS-based plasma proteomics. Proteomics9(6), 1420–1427 (2009).
  • Roche S, Tiers L, Provansal M et al. Depletion of one, six, twelve or twenty major blood proteins before proteomic analysis: the more the better? J. Proteomics72(6), 945–951 (2009).
  • Ahmed FE. Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry. J. Sep. Sci.32(5–6), 771–798 (2009).
  • Polaskova V, Kapur A, Khan A, Molloy MP, Baker MS. High-abundance protein depletion: comparison of methods for human plasma biomarker discovery. Electrophoresis31(3), 471–482 (2010).
  • Fang XM, Zhang WW. Affinity separation and enrichment methods in proteomic analysis. J. Proteomics71(3), 284–303 (2008).
  • Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat. Methods7(5), 383–385 (2010).
  • Zielinska DF, Gnad F, Wisniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell141(5), 897–907 (2010).
  • Tibes R, Qiu Y, Lu Y et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol. Cancer Ther.5(10), 2512–2521 (2006).
  • Rimini R, Schwenk JM, Sundberg M et al. Validation of serum protein profiles by a dual antibody array approach. J. Proteomics73(2), 252–266 (2009).
  • Kricka LJ, Master SR. Validation and quality control of protein microarray-based analytical methods. Mol. Biotechnol.38(1), 19–31 (2008).
  • Chen C, McGarvey PB, Huang H, Wu CH. Protein bioinformatics infrastructure for the integration and analysis of multiple high-throughput ‘omics’ data. Adv. Bioinformatics2010, 1–20 (2010).
  • Kricka LJ, Master SR. Quality control and protein microarrays. Clin. Chem.55(6), 1053–1055 (2009).
  • Yang HN, Harrington CA, Vartanian K et al. Randomization in laboratory procedure is key to obtaining reproducible microarray results. PLOS One3(11), e3724 (2008).
  • Filzmoser P, Maronna R, Werner M. Outlier identification in high dimensions. Comput. Stat. Data Anal.52(3), 1694–1711 (2008).
  • Shieh AD, Hung YS. Detecting outlier samples in microarray data. Stat. Appl. Genet. Mol. Biol.8(1), Article 13 (2009).
  • Schulz-Trieglaff O, Machtejevas E, Reinert K et al. Statistical quality assessment and outlier detection for liquid chromatography-mass spectrometry experiments. BioData Min.2(1), 4 (2009).
  • van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics7, 142 (2006).
  • Sboner A, Karpikov A, Chen G et al. Robust-linear-model normalization to reduce technical variability in functional protein microarrays. J. Proteome Res.9(1), 636–636 (2009).
  • Hamelinck D, Zhou H, Li L et al. Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol. Cell Proteomics4(6), 773–784 (2005).
  • Cohen Freue GV, Hollander Z, Shen E et al. MDQC: a new quality assessment method for microarrays based on quality control reports. Bioinformatics23(23), 3162–3169 (2007).
  • Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem.78(13), 4281–4290 (2006).
  • Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol.3, Article 3 (2004).
  • Corzett TH, Fodor IK, Choi MW et al. Statistical analysis of variation in the human plasma proteome. J. Biomed. Biotechnol.2010, 258494 (2010).
  • Daly DS, Anderson KK, Seurynck-Servoss SL et al. An internal calibration method for protein-array studies. Stat. Appl. Genet. Mol. Biol.9(1), Article 14 (2010).
  • Silva-Aycaguer LC, Suarez-Gil P, Fernandez-Somoano A. The null hypothesis significance test in health sciences research (1995–2006): statistical analysis and interpretation. BMC Med. Res. Methodol.10(1), 44 (2010).
  • Reiner A. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics19(3), 368–375 (2003).
  • Graf AC, Bauer P. Model selection based on FDR-thresholding optimizing the area under the ROC-curve. Stat. Appl. Genet. Mol. Biol.8(1), Article 31 (2009).
  • Noble WS. How does multiple testing correction work? Nat. Biotechnol.27(12), 1135–1137 (2009).
  • Tang Y, Zhang Y-Q, Huang Z. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM Trans. Comput. Biol. Bioinform.4(3), 365–381 (2007).
  • Zhang J, Wang Y, Dong Y, Wang Y. Ultrasonographic feature selection and pattern classification for cervical lymph nodes using support vector machines. Comput. Methods Programs Biomed.88(1), 75–84 (2007).
  • Zhang X, Lu X, Shi Q et al. Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics7, 197 (2006).
  • Hartmann M, Schrenk M, Döttinger A et al. Expanding assay dynamics: a combined competitive and direct assay system for the quantification of proteins in multiplexed immunoassays. Clin. Chem.54(6), 956–963 (2008).
  • Ocana MF, Neubert H. An immunoaffinity liquid chromatography-tandem mass spectrometry assay for the quantitation of matrix metalloproteinase 9 in mouse serum. Anal. Biochem.399(2), 202–210 (2010).
  • James J, Moresco PCC, Yates JR III. Identifying components of protein complexes in C. elegans using co-immunoprecipitation and mass spectrometry. J. Proteomics73(11), 2198–2204 (2010).
  • Poetz O, Luckert K, Herget T, Joos T. Microsphere-based co-immunoprecipitation next term in multiplex. Anal. Biochem.395(2), 244–248 (2009).
  • Cheng D, Branscum AJ, Stamey JD. Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studies. Ann. Epidemiol.20(7), 562–567 (2010).
  • Casal JI, Barderas R. Identification of cancer autoantigens in serum: toward diagnostic/prognostic testing? Mol. Diagn. Ther.14(3), 149–154 (2010).
  • Riegman PH, Dinjens WN, Oosterhuis JW. Biobanking for interdisciplinary clinical research. Pathobiology74(4), 239–244 (2007).
  • Riegman PH, Morente MM, Betsou F, de Blasio P, Geary P. Biobanking for better healthcare. Mol. Oncol.2(3), 213–222 (2008).
  • Jackson DH, Banks RE. Banking of clinical samples for proteomic biomarker studies: a consideration of logistical issues with a focus on pre-analytical variation. Proteom. Clin. Appl.4(3), 250–270 (2010).
  • Owen JM, Woods P. Designing and implementing a large-scale automated -80 degrees C archive. Int. J. Epidemiol.37(Suppl. 1), I56–I61 (2008).
  • Downey P, Peakman TC. Design and implementation of a high-throughput biological sample processing facility using modern manufacturing principles. Int. J. Epidemiol.37, 46–50 (2008).
  • Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature452(7187), 571–579 (2008).
  • Uhlen M. Mapping the human proteome using antibodies. Mol. Cell Proteomics6(8), 1455–1456 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.