111
Views
30
CrossRef citations to date
0
Altmetric
Review

Identifying biomarkers as diagnostic tools in kidney transplantation

, , &
Pages 183-196 | Published online: 09 Jan 2014

References

  • Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N. Engl. J. Med.342(9), 605–612 (2000).
  • Meier-Kriesche HU, Schold JD, Srinivas TR, Kaplan B. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am. J. Transplant.4(3), 378–383 (2004).
  • Solez K, Vincenti F, Filo RS. Histopathologic findings from 2-year protocol biopsies from a U.S. multicenter kidney transplant trial comparing tarolimus versus cyclosporine: a report of the FK506 Kidney Transplant Study Group. Transplantation66(12), 1736–1740 (1998).
  • Cunningham MJ. Genomics and proteomics: the new millennium of drug discovery and development. J. Pharmacol. Toxicol. Methods44(1), 291–300 (2000).
  • Ashton-Chess J, Giral M, Soulillou JP, Brouard S. Using biomarkers of tolerance and rejection to identify high- and low-risk patients following kidney transplantation. Transplantation87(9 Suppl.), S95–S99 (2009).
  • Keown PA, McMaster WR, McManus BM. Tools to identify organ rejection and immune quiescence for biological understanding and personalized medical care. Biomark. Med.4(1), 115–121 (2010).
  • Sigdel TK, Sarwal MM. The proteogenomic path towards biomarker discovery. Pediatr. Transplant.12(7), 737–747 (2008).
  • Biomarkers Definitions Working Group. Biomarkers and surrogate end points: preferred definitions and conceptual framework. Clin. Pharmacol. Ther.69, 89–95 (2001).
  • Gillespie A, Lee IJ. Biomarkers in renal transplantation. Biomark. Med.2(6), 603–612 (2008).
  • Fitzsimmons W, Thompson D, Hariharan S, Van Veldhuisen P. Serum creatinine as a surrogate end point for graft loss in kidney transplantation: validation efforts from multicentre trials. Am. J. Transplant.2(Suppl. 3), 272 (2002).
  • Kaplan B, Schold J, Srinivas T et al. Effect of sirolimus withdrawal in patients with deteriorating renal function. Am. J. Transplant.4(10), 1709–1712 (2004).
  • Schold JD, Kaplan B. The elephant in the room: failings of current clinical end points in kidney transplantation. Am. J. Transplant.10(5), 1163–1166 (2010).
  • Poggio ED, Batty DS, Flechner SM. Evaluation of renal function in transplantation. Transplantation84(2), 131–136 (2007).
  • Goerdt PJ, Heim-Duthoy KL, Macres M, Swan SK. Predictive performance of renal function estimate equations in renal allografts. Br. J. Clin. Pharmacol.44, 261–265 (1997).
  • Stoves J, Lindley EJ, Barnfield MC, Burniston MT, Newstead CG. MDRD equation estimates of glomerular filtration rate in potential living kidney donors and renal transplant recipients with impaired graft function. Nephrol. Dial. Transplant.17, 2036–2037 (2002).
  • Manotham K, Booranalertpaisarn V, Eiam-Ong S, Chusil S, Praditpornsilpa K, Tungsanga K. Accurately simple estimation of glomerular filtration rate in kidney transplant patients. Transplant. Proc.34, 1148–1151 (2002).
  • Mariat C, Alamartine E, Barthelemy JC et al. Assessing renal graft function in clinical trials: can tests predicting glomerular filtration rate substitute for a reference method? Kidney Int.65(1), 289–297 (2004).
  • Gaspari F, Ferrari S, Stucchi N et al. Performance of different prediction equations for estimating renal function in kidney transplantation. Am. J. Transplant.4(11), 1826–1835 (2004).
  • Bosma RJ, Doorenbos CR, Stegeman CA, van der Heide JJ, Navis G. Predictive performance of renal function equations in renal transplant recipients: an analysis of patient factors in bias. Am. J. Transplant.5(9), 2193–2203 (2005).
  • Pascual M, Vallhonrat H, Cosimi AB et al. The clinical usefulness of the renal allograft biopsy in the cyclosporine era: a prospective study. Transplantation67(5), 737–741 (1999).
  • Furness PN. Predicting allograft survival: abundant data, but insufficient knowledge? Transplantation83(6), 681 (2007).
  • Rush D. Can protocol biopsy better inform our choices in renal transplantation? Transplant. Proc.41(6 Suppl.), S6–S8 (2009).
  • Piovesan AC, Lucon AM, David DS, Nahas WC, Antonopoulos IM, Srougi M. Multifocal renal allograft biopsy: impact on therapeutic decisions. Transplant. Proc.40(10), 3397–3400 (2008).
  • Strimbu K, Tavel JA. What are biomarkers? Curr. Opin. HIV AIDS5(6), 463–466 (2010).
  • De Gruttola VG, Clax P, DeMets DL et al. Considerations in the evaluation of surrogate end points in clinical trials. Summary of a National Institutes of Health workshop. Control Clin. Trials22(5), 485–502 (2001).
  • Daemen A, Gevaert O, Ojeda F et al. A kernel-based integration of genome-wide data for clinical decision support. Genome Med.1(4), 39 (2009).
  • Losko S, Heumann K. Semantic data integration and knowledge management to represent biological network associations. Methods Mol. Biol.563, 241–258 (2009).
  • Furness PN. Predicting allograft survival: abundant data, but insufficient knowledge? Transplantation83(6), 681 (2007).
  • Kong X, Mas V, Archer KJ. A non-parametric meta-analysis approach for combining independent microarray datasets: application using two microarray datasets pertaining to chronic allograft nephropathy. BMC Genomics26(9), 98 (2008).
  • Morgan AA, Khatri P, Jones RH, Sarwal MM, Butte AJ. Comparison of multiplex meta analysis techniques for understanding the acute rejection of solid organ transplants. BMC Bioinformatics11(Suppl. 9), S6 (2010).
  • Hockley SL, Mathijs K, Staal YC et al. Interlaboratory and interplatform comparison of microarray gene expression analysis of HepG2 cells exposed to benzo(a)pyrene. OMICS13(2), 115–125 (2009).
  • Pedotti P, ‘t Hoen PA, Vreugdenhil E et al. Can subtle changes in gene expression be consistently detected with different microarray platforms? BMC Genomics10(9), 124 (2008).
  • Fan J, Feng Y, Niu YS. Nonparametric estimation of genewise variance for microarray data. Ann. Stat.201038(5), 2723–2750 (2010).
  • Shi L, Campbell G, Jones WD et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol.28(8), 827–838 (2010).
  • Sato F, Tsuchiya S, Terasawa K, Tsujimoto G. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One4(5), e5540 (2009).
  • Mao S, Wang C, Dong G. Evaluation of inter-laboratory and cross-platform concordance of DNA microarrays through discriminating genes and classifier transferability. J. Bioinform. Comput. Biol.7(1), 157–173 (2009).
  • Sarwal MM. Deconvoluting the ‘omics’ for organ transplantation. Curr. Opin. Organ Transplant.14(5), 544–551 (2009).
  • Irish WD, Ilsley JN, Schnitzler MA, Feng S, Brennan DC. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am. J. Transplant.10(10), 2279–2286 (2010).
  • Bartlett ST, Schweitzer EJ, Cooper M. Prediction model for delayed kidney transplant function: no need for new regulation. Am. J. Transplant.10(10), 2191–2192 (2010).
  • Mühlberger I, Perco P, Fechete R, Mayer B, Oberbauer R. Biomarkers in renal transplantation ischemia reperfusion injury. Transplantation88(3 Suppl.), S14–S19 (2009).
  • Basile DP. Novel approaches in the investigation of acute kidney injury. J. Am. Soc. Nephrol.18(1), 7–9 (2007).
  • Hauser P, Schwarz C, Mitterbauer C et al. Genome-wide gene-expression patterns of donor kidney biopsies distinguish primary allograft function. Lab. Invest.84(3), 353–361 (2004).
  • Kainz A, Mitterbauer C, Hauser P et al. Alterations in gene expression in cadaveric vs. live donor kidneys suggest impaired tubular counterbalance of oxidative stress at implantation. Am. J. Transplant.4(10), 1595–1604 (2004).
  • Mueller TF, Reeve J, Jhangri GS et al. The transcriptome of the implant biopsy identifies donor kidneys at increased risk of delayed graft function. Am. J. Transplant.8(1), 78–85 (2008).
  • Mas VR, Archer KJ, Yanek K et al. Gene expression patterns in deceased donor kidneys developing delayed graft function after kidney transplantation. Transplantation85(4), 626–635 (2008).
  • Naesens M, Sarwal M. Looking into the crystal chip: can microarrays predict graft function? Transplantation85(4), 499–500 (2008).
  • Korbély R, Wilflingseder J, Perco P et al. Molecular biomarker candidates of acute kidney injury in zero-hour renal transplant needle biopsies. Transpl. Int.24(2), 143–149 (2010).
  • Kainz A, Wilflingseder J, Mitterbauer C et al. Steroid pretreatment of organ donors to prevent postischemic renal allograft failure: a randomized, controlled trial. Ann. Intern. Med.153(4), 222–230 (2010).
  • Wilflingseder J, Kainz A, Mühlberger I et al. Impaired metabolism in donor kidney grafts after steroid pretreatment. Transpl. Int.23(8), 796–804 (2010).
  • Hall IE, Yarlagadda SG, Coca SG et al. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J. Am. Soc. Nephrol.21(1), 189–197 (2010).
  • Mishra J, Ma Q, Kelly C et al. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr. Nephrol.21(6), 856–863 (2006).
  • Zhang PL, Rothblum LI, Han WK, Blasick TM, Potdar S, Bonventre JV. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int.73(5), 608–614 (2008).
  • Nijboer WN, Schuurs TA, Damman J et al. Kidney injury molecule-1 is an early noninvasive indicator for donor brain death-induced injury prior to kidney transplantation. Am. J. Transplant.9(8), 1752–1759 (2009).
  • Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int.73(9), 1008–1016 (2008).
  • Hartono C, Muthukumar T, Suthanthiran M. Noninvasive diagnosis of acute rejection of renal allografts. Curr. Opin. Organ Transplant.15(1), 35–41 (2010).
  • Solez K, Colvin RB, Racusen LC et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant.8, 753–760 (2008).
  • Sorof JM, Vartanian RK, Olson JL et al. Histopathological concordance of paired renal allograft biopsy cores. Effect on the diagnosis and management of acute rejection. Transplantation60, 1215–1219 (1995).
  • Furness PN, Taub N. International variation in the interpretation of renal transplant biopsies: report of the CERTRAP project. Kidney Int.60, 1998–2012 (2001).
  • Sarwal M, Fernandez-Fresnedo G, Rodrigo E et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med.349(2), 125–138 (2003).
  • Reeve J, Einecke G, Mengel M et al. Diagnosing rejection in renal transplants: a comparison of molecular- and histopathology-based approaches. Am. J. Transplant.9(8), 1802–1810 (2009).
  • Desvaux D, Schwarzinger M, Pastural M et al. Molecular diagnosis of renal-allograft rejection: correlation with histopathologic evaluation and antirejection-therapy resistance. Transplantation78(5), 647–653 (2004).
  • Chua MS, Mansfield E, Sarwal M. Applications of microarrays to renal transplantation: progress and possibilities. Front. Biosci.8, S913–S923 (2003).
  • Jurcevic S, Sacks S. Gene microarrays in transplantation. Curr. Opin. Nephrol. Hypertens.12(6), 577–579 (2003).
  • Ying L, Sarwal M. In praise of arrays. Pediatr. Nephrol.24(9), 1643–1659 (2009).
  • Flechner SM, Kurian SM, Head SR et al. Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am. J. Transplant.4(9), 1475–1489 (2004).
  • Li B, Hartono C, Ding R et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N. Engl. J. Med.344, 947–954 (2001).
  • Yannaraki M, Rebibou JM, Ducloux D et al. Urinary cytotoxic molecular markers for a noninvasive diagnosis in acute renal transplant rejection. Transpl. Int.19(9), 759–768 (2006).
  • Vasconcellos LM, Schachter AD, Zheng XX et al. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation66(5), 562–566 (1998).
  • Ting YT, Coates PT, Marti HP et al. Urinary soluble HLA-DR is a potential biomarker for acute renal transplant rejection. Transplantation89(9), 1071–1078 (2010).
  • Nickerson P. Post-transplant monitoring of renal allografts: are we there yet? Curr. Opin. Immunol.21(5), 563–568 (2009).
  • Schaub S, Wilkins JA, Nickerson P. Proteomics and renal transplantation: searching for novel biomarkers and therapeutic targets. Contrib. Nephrol.160, 65–75 (2008).
  • Schaub S, Rush D, Wilkins J et al. Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J. Am. Soc. Nephrol.15(1), 219–227 (2004).
  • Sigdel TK, Kaushal A, Gritsenko M et al. Shotgun proteomics identifies proteins specific for acute renal transplant rejection. Proteomics Clin. Appl.4(1), 32–47 (2010).
  • Tian J, Shi WF, Zhang LW et al. HLA class I (ABC) upregulation on peripheral blood CD3+/CD8+ T lymphocyte surface is a potential predictor of acute rejection in renal transplantation. Transplantation88(12), 1393–1397 (2009).
  • Hoefig KP, Heissmeyer V. MicroRNAs grow up in the immune system. Curr. Opin. Immunol.20, 281–287 (2008).
  • Lodish HF, Zhou B, Liu G et al. Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol.8, 120–130 (2008).
  • Valencia-Sanchez MA, Liu J, Hannon GJ et al. Control of translational and mRNA degradation by miRNAs and siRNAs. Genes Dev.20, 515–524 (2006).
  • Sui W, Dai Y, Huang Y, Lan H, Yan Q, Huang H. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transpl. Immunol.19(1), 81–85 (2008).
  • Anglicheau D, Sharma VK, Ding R et al. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl Acad. Sci. USA106, 5330–5335 (2009).
  • Anglicheau D, Muthukumar T, Suthanthiran M. MicroRNAs: small RNAs with big effects. Transplantation90(2), 105–112 (2010).
  • Serón D, Moreso F, Ramón JM et al. Protocol renal allograft biopsies and the design of clinical trials aimed to prevent or treat chronic allograft nephropathy. Transplantation69(9), 1849–1855 (2000).
  • de Matos AC, Câmara NO, de Oliveira AF et al. Functional and morphologic evaluation of kidney proximal tubuli and correlation with renal allograft prognosis. Transpl. Int.23(5), 493–499 (2010).
  • Vazquez MA, Jeyarajah DR, Kielar ML, Lu CY. Long-term outcomes of renal transplantation: a result of the original endowment of the donor kidney and the inflammatory response to both alloantigens and injury. Curr. Opin. Nephrol. Hypertens.9(6), 643–648 (2000).
  • Giral M, Nguyen JM, Karam G et al. Impact of graft mass on the clinical outcome of kidney transplants. J. Am. Soc. Nephrol.16(1), 261–268 (2005).
  • Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N. Engl. J. Med.349(24), 2326–2333 (2003).
  • 2008 Annual Report of the US Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: transplant data 1998–2007. US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation, Rockville, MD, USA (2008).
  • Halloran PF, Langone AJ, Helderman JH, Kaplan B. Assessing long-term nephron loss: is it time to kick the CAN grading system? Am. J. Transplant.4(11), 1729–1730 (2004).
  • Mengel M. The kidney transplant: new horizons. Curr. Opin. Nephrol. Hypertens.19(3), 260–265 (2010).
  • Bestard O, Cruzado JM, la Franquesa M, Grinyó JM. Biomarkers in renal transplantation. Curr. Opin. Organ Transplant.15(4), 467–473 (2010).
  • Serón D, Moreso F, Ramón JM et al. Protocol renal allograft biopsies and the design of clinical trials aimed to prevent or treat chronic allograft nephropathy. Transplantation69(9), 1849–1855 (2000).
  • de Matos AC, Câmara NO, de Oliveira AF et al. Functional and morphologic evaluation of kidney proximal tubuli and correlation with renal allograft prognosis. Transpl. Int.23(5), 493–499 (2010).
  • Rosen S, Stillman IE. Acute tubular necrosis is a syndrome of physiologic and pathologic dissociation. J. Am. Soc. Nephrol.19(5), 871–875 (2008).
  • Schlondorff DO. Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int.74(7), 860–866 (2008).
  • Schröppel B, Heeger PS. Gazing into a crystal ball to predict kidney transplant outcome. J. Clin. Invest.120(6), 1803–1806 (2010).
  • Mas VR, Archer KJ, Scian M, Maluf DG. Molecular pathways involved in loss of graft function in kidney transplant recipients. Expert Rev. Mol. Diagn.10(3), 269–284 (2010).
  • Scherer A, Gwinner W, Mengel M et al. Transcriptome changes in renal allograft protocol biopsies at 3 months precede the onset of interstitial fibrosis/tubular atrophy (IF/TA) at 6 months. Nephrol. Dial.Transplant.24(8), 2567–2575 (2009).
  • Scherer A, Krause A, Walker JR, Korn A, Niese D, Raulf F. Early prognosis of the development of renal chronic allograft rejection by gene expression profiling of human protocol biopsies. Transplantation75(8), 1323–1330 (2003).
  • Hotchkiss H, Chu TT, Hancock WW et al. Differential expression of profibrotic and growth factors in chronic allograft nephropathy. Transplantation81(3), 342–349 (2006).
  • Mas V, Maluf D, Archer K et al. Establishing the molecular pathways involved in chronic allograft nephropathy for testing new noninvasive diagnostic markers. Transplantation83(4), 448–457 (2007).
  • Maluf DG, Mas VR, Archer KJ et al. Molecular pathways involved in loss of kidney graft function with tubular atrophy and interstitial fibrosis. Mol. Med.14(5–6), 276–285 (2008).
  • Mengel M, Reeve J, Bunnag S, Einecke G et al. Molecular correlates of scarring in kidney transplants: the emergence of mast cell transcripts. Am. J. Transplant.9(1), 169–178 (2009).
  • Einecke G, Reeve J, Sis B et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J. Clin. Invest.120(6), 1862–1872 (2010).
  • Park WD, Griffin MD, Cornell LD, Cosio FG, Stegall MD. Fibrosis with inflammation at one year predicts transplant functional decline. J. Am. Soc. Nephrol.21(11), 1987–1997 (2010).
  • Kurian SM, Heilman R, Mondala TS et al. Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood. PLoS One4(7), e6212 (2009).
  • Mas VR, Mas LA, Archer KJ et al. Evaluation of gene panel mRNAs in urine samples of kidney transplant recipients as a non-invasive tool of graft function. Mol. Med.13(5–6), 315–324 (2007).
  • Schröppel B, Heeger PS. Gazing into a crystal ball to predict kidney transplant outcome. J. Clin. Invest.120(6), 1803–1806 (2010).
  • Afzali B, Lombardi G, Lechler RI. Pathways of major histocompatibility complex allorecognition. Curr. Opin. Organ Transplant.13, 438–444 (2008).
  • Hernandez-Fuentes MP, Lechler RI. A ‘biomarker signature’ for tolerance in transplantation. Nat. Rev. Nephrol.6(10), 606–613 (2010).
  • Newell KA, Asare A, Kirk AD et al. Immune Tolerance Network ST507 Study Group. Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Invest.120(6), 1836–1847 (2010).
  • Sagoo P, Perucha E, Sawitzki B. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Invest.120(6), 1848–1861 (2010).
  • Zaza G, Granata S, Sallustio F, Grandaliano G, Schena FP.Pharmacogenomics: a new paradigm to personalize treatments in nephrology patients. Clin. Exp. Immunol.159(3), 268–280 (2010).
  • Goldfarb-Rumyantzev AS, Naiman N. Genetic prediction of renal transplant outcome. Curr. Opin. Nephrol. Hypertens.17(6), 573–579 (2008).
  • McKnight AJ, Currie D, Maxwell AP. Unravelling the genetic basis of renal diseases; from single gene to multifactorial disorders. J. Pathol.220(2), 198–216 (2010).
  • Little J, Higgins JP, Ioannidis JP et al. Strengthening the Reporting of Genetic Association Studies (STREGA) – an extension of the STROBE statement. Genet. Epidemiol.33, 581–598 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.