151
Views
18
CrossRef citations to date
0
Altmetric
Review

Microfluidic cell arrays in tumor analysis: new prospects for integrated cytomics

&
Pages 521-530 | Published online: 09 Jan 2014

References

  • Doroshow JH, Parchment RE. Oncologic phase 0 trials incorporating clinical pharmacodynamics: from concept to patient. Clin. Cancer Res.14(12), 3658–3663 (2008).
  • Kummar S, Kinders R, Rubinstein L et al. Compressing drug development timelines in oncology using Phase ‘0’ trials. Nat. Rev. Cancer7(2), 131–139 (2007).
  • Rowinsky EK. Curtailing the high rate of late-stage attrition of investigational therapeutics against unprecedented targets in patients with lung and other malignancies. Clin. Cancer Res.10(12 Pt 2), 4220s–4226s (2004).
  • Mita AC, Mita MM, Rowinsky EK. Development of rationally designed, target-based agents for the treatment of advanced colorectal cancer. Clin. Colorectal Cancer4(2), 107–123 (2004).
  • Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer5(11), 876–885 (2005).
  • Wlodkowic D, Skommer J, McGuinness D, Hillier C, Darzynkiewicz Z. ER–Golgi network – a future target for anti-cancer therapy. Leuk. Res.33(11), 1440–1447 (2009).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Trosko JE, Chang CC, Upham BL, Tai MH. Ignored hallmarks of carcinogenesis: stem cells and cell–cell communication. Ann. NY Acad. Sci.1028, 192–201 (2004).
  • Ashkenazi A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat. Rev. Drug Discov.7(12), 1001–1012 (2008).
  • Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr. Pharm. Des.15(17), 1949–1955 (2009).
  • Jodele S, Blavier L, Yoon JM, DeClerck YA. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev.25(1), 35–43 (2006).
  • Zumsteg A, Christofori G. Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr. Opin. Oncol.21(1), 60–70 (2009).
  • Ali S, Lazennec G. Chemokines: novel targets for breast cancer metastasis. Cancer Metastasis Rev.26(3–4), 401–420 (2007).
  • Lane SW, Scadden DT, Gilliland DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood114(6), 1150–1157 (2009).
  • Meng XW, Lee SH, Kaufmann SH. Apoptosis in the treatment of cancer: a promise kept? Curr. Opin. Cell Biol.18(6), 668–676 (2006).
  • Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J. Clin.55(3), 178–194 (2005).
  • Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer103(8), 1551–1560 (2005).
  • Mross K, Stefanic M, Gmehling D et al. Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin. Cancer Res.16(1), 311–319 (2010).
  • Cuevas I, Boudreau N. Managing tumor angiogenesis: lessons from VEGF-resistant tumors and wounds. Adv. Cancer Res.103, 25–42 (2009).
  • Wlodkowic D, Skommer J, McGuinness D et al. Chip-based dynamic real-time quantification of drug-induced cytotoxicity in human tumor cells. Anal. Chem.81(16), 6952–6959 (2009).
  • Wlodkowic D, Skommer J, Faley S, Darzynkiewicz Z, Cooper JM. Dynamic analysis of apoptosis using cyanine SYTO probes: from classical to microfluidic cytometry. Exp. Cell Res.315(10), 1706–1714 (2009).
  • Wlodkowic D, Faley S, Zagnoni M, Wikswo JP, Cooper JM. Microfluidic single-cell array cytometry for the analysis of tumor apoptosis. Anal. Chem.81(13), 5517–5523 (2009).
  • Zhao H, Oczos J, Janowski P et al. Rationale for the real-time and dynamic cell death assays using propidium iodide. Cytometry A77(4), 399–405 (2010).
  • Kim YE, Chen J, Chan JR, Langen R. Engineering a polarity-sensitive biosensor for time-lapse imaging of apoptotic processes and degeneration. Nat. Methods7(1), 67–73 (2010).
  • Faley SL, Copland M, Wlodkowic D et al. Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip9(18), 2659–2664 (2009).
  • Cen H, Mao F, Aronchik I, Fuentes RJ, Firestone GL. DEVD-NucView488: a novel class of enzyme substrates for real-time detection of caspase-3 activity in live cells. FASEB J.22(7), 2243–2252 (2008).
  • Short B. Cell biologists expand their networks. J. Cell Biol.186(3), 305–311 (2009).
  • Zhang W, Li F, Nie L. Integrating multiple “omics” analysis for microbial biology: application and methodologies. Microbiology156(Pt 2), 287–301 (2010).
  • Tárnok A, Bocsi J, Brockhoff G. Cytomics – importance of multimodal analysis of cell function and proliferation in oncology. Cell. Prolif.39(6), 495–505 (2006).
  • Tárnok A, Valet GK, Emmrich F. Systems biology and clinical cytomics: the 10th Leipziger Workshop and the 3rd International Workshop on Slide-Based Cytometry, Leipzig, Germany, April 2005. Cytometry A69(1), 36–40 (2006).
  • Enderling H, Anderson AR, Chaplain MA, Beheshti A, Hlatky L, Hahnfeldt P. Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res.69(22), 8814–8821 (2009).
  • Lavrik IN, Eils R, Fricker N, Pforr C, Krammer PH. Understanding apoptosis by systems biology approaches. Mol. Biosyst.5(10), 1105–1111 (2009).
  • Eschrich S, Zhang H, Zhao H et al. Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int. J. Radiat. Oncol. Biol. Phys.75(2), 497–505 (2009).
  • Wlodkowic D, Skommer J, Darzynkiewicz Z. Flow cytometry-based apoptosis detection. Methods Mol. Biol.559, 19–32 (2009).
  • Harnett MM. Laser scanning cytometry: understanding the immune system in situ. Nat. Rev. Immunol.7(11), 897–904 (2007).
  • Herrera G, Diaz L, Martinez-Romero A et al. Cytomics: a multiparametric, dynamic approach to cell research. Toxicol. In Vitro21(2), 176–182 (2007).
  • Andersson H, van den Berg A. Microtechnologies and nanotechnologies for single-cell analysis. Curr. Opin. Biotechnol.15(1), 44–49 (2004).
  • Svahn HA, van den Berg A. Single cells or large populations? Lab Chip7(5), 544–546 (2007).
  • Manz A, Dittrich PS. Lab-on-a-chip: microfluidics in drug discovery. Nat. Drug Discov.5, 210–218 (2006).
  • Sims CE, Allbritton NL. Analysis of single mammalian cells on-chip. Lab Chip7, 423–440 (2007).
  • Whitesides GM. The origins and the future of microfluidics. Nature442, 368–372 (2006).
  • Wang J, Ren L, Li L et al. Microfluidics: a new cosset for neurobiology. Lab Chip9(5), 644–652 (2009).
  • El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature442, 403–411 (2006).
  • Wheeler DB, Carpenter AE, Sabatini DM. Cell microarrays and RNA interference chip away at gene function. Nat. Genet.37(Suppl.), S25–S30 (2005).
  • Tokimitsu Y, Kishi H, Kondo S et al. Single lymphocyte analysis with a microwell array chip. Cytometry A71(12), 1003–1010 (2007).
  • Tajiri K, Kishi H, Tokimitsu Y et al. Cell-microarray analysis of antigen-specific B-cells: single cell analysis of antigen receptor expression and specificity. Cytometry A71(11), 961–967 (2007).
  • Yamamura S, Kishi H, Tokimitsu Y et al. Single-cell microarray for analyzing cellular response. Anal. Chem.77(24), 8050–8056 (2005).
  • Rettig JR, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Anal. Chem.77(17), 5628–5634 (2005).
  • Lindström S, Eriksson M, Vazin T et al. High-density microwell chip for culture and analysis of stem cells. PLoS ONE4(9), e6997 (2009).
  • Lindström S, Mori K, Ohashi T, Andersson-Svahn H. A microwell array device with integrated microfluidic components for enhanced single-cell analysis. Electrophoresis30(24), 4166–4171 (2009).
  • Wlodkowic D, Faley S, Skommer J, McGuinness D, Cooper JM. Biological implications of polymeric microdevices for live cell assays. Anal. Chem.81(23), 9828–9833 (2009).
  • Thomas RS, Morgan H, Green NG. Negative DEP traps for single cell immobilisation. Lab Chip9(11), 1534–1540 (2009).
  • Bocchi M, Lombardini M, Faenza A et al. Dielectrophoretic trapping in microwells for manipulation of single cells and small aggregates of particles. Biosens. Bioelectron.24(5), 1177–1183 (2009).
  • Miyake M, Yoshikawa T, Fujita S, Miyake J. Transfection microarray and the applications. Mol. Biosyst.5(5), 444–449 (2009).
  • Di Carlo D, Wu LY, Lee LP. Dynamic single cell culture array. Lab Chip6(11), 1445–1449 (2006).
  • Wang Z, Kim MC, Marquez M, Thorsen T. High-density microfluidic arrays for cell cytotoxicity analysis. Lab Chip7(6), 740–745 (2007).
  • Roach KL, King KR, Uygun BE, Kohane IS, Yarmush ML, Toner M. High throughput single cell bioinformatics. Biotechnol. Prog.25(6), 1772–1779 (2009).
  • Yarmush ML, King KR. Living-cell microarrays. Annu. Rev. Biomed. Eng.11, 235–257 (2009).
  • King KR, Wang S, Irimia D, Jayaraman A, Toner M, Yarmush ML. A high-throughput microfluidic real-time gene expression living cell array. Lab Chip7(1), 77–85 (2007).
  • Faley S, Seale K, Hughey J et al. Microfluidic platform for real-time signaling analysis of multiple single T cells in parallel. Lab Chip8(10), 1700–1712 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.