266
Views
47
CrossRef citations to date
0
Altmetric
Review

Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease

, , &
Pages 667-690 | Published online: 09 Jan 2014

References

  • Cummings JL. Alzheimer’s disease. N. Engl. J. Med.351(1), 56–67 (2004).
  • Dodson SE, Gearing M, Lippa CF, Montine TJ, Levey AI, Lah JJ. LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. J. Neuropathol. Exp. Neurol.65(9), 866–872 (2006).
  • Avramopoulos D. Genetics of Alzheimer’s disease: recent advances. Genome Med.1(3), 34 (2009).
  • Greene JD, Baddeley AD, Hodges JR. Analysis of the episodic memory deficit in early Alzheimer’s disease: evidence from the doors and people test. Neuropsychologia34(6), 537–551 (1996).
  • Price BH, Gurvit H, Weintraub S, Geula C, Leimkuhler E, Mesulam M. Neuropsychological patterns and language deficits in 20 consecutive cases of autopsy-confirmed Alzheimer’s disease. Arch. Neurol.50, 931–937 (1993).
  • Esteban-Santillan C, Praditsuwan R, Ueda H, Geldmacher DS. Clock drawing test in very mild Alzheimer’s disease. J. Am. Geriatr. Soc.46(10), 1266–1269 (1998).
  • Finkel S. Introduction to behavioural and psychological symptoms of dementia (BPSD). Int. J. Geriatr. Psychiatry15(Suppl. 1), S2–S4 (2000).
  • Steele C, Rovner B, Chase GA, Folstein M. Psychiatric symptoms and nursing home placement of patients with Alzheimer’s disease. Am. J. Psychiatry147(8), 1049–1051 (1990).
  • Alzheimer A. Über eine eigenartige Erkrankung der Himrinde. Allg. Z Psychiat. Med.64, 146–148 (1907).
  • Tanzi RE, Gusella JF, Watkins PC et al. Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science235(4791), 880–884 (1987).
  • Iqbal K, Alonso AC, Gong CX et al. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J. Neural. Transm. Suppl.53, 169–180 (1998).
  • Kokjohn TA, Roher AE. Amyloid precursor protein transgenic mouse models and Alzheimer’s disease: understanding the paradigms, limitations, and contributions. Alzheimers Dement.5(4), 340–347 (2009).
  • Phinney AL, Horne P, Yang J, Janus C, Bergeron C, Westaway D. Mouse models of Alzheimer’s disease: the long and filamentous road. Neurol. Res.25(6), 590–600 (2003).
  • Barten DM, Albright CF. Therapeutic strategies for Alzheimer’s disease. Mol. Neurobiol.37(2–3), 171–186 (2008).
  • Salzman C, Jeste DV, Meyer R, et al. Elderly patients with dementia-related symptoms of severe agitation and aggression: consensus statement on treatment options, clinical trials methodology, and policy. J. Clin. Psychiatry69(6), 889–898 (2008).
  • Salloway S, Mintzer J, Weiner MF, Cummings JL. Disease-modifying therapies in Alzheimer’s disease. Alzheimers Dement.4(2), 65–79 (2008).
  • Bertram L, Tanzi RE. Genome-wide association studies in Alzheimer’s disease. Hum. Mol. Genet.18(R2), R137–R145 (2009).
  • Goate A, Chartier-Harlin MC, Mullan M et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature349, 704–706 (1991).
  • Sherrington R, Rogaev EI, Liang Y et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature375, 754–760 (1995).
  • Levy-Lahad E, Wijsman EM, Nemens E et al. A familial Alzheimer’s disease locus on chromosome 1. Science269, 970–973 (1995).
  • Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell120(4), 545–555 (2005).
  • Raux G, Guyant-Maréchal L, Martin C et al. Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: an update. J. Med. Genet.42(10), 793–795 (2005).
  • Cacabelos R, Fernandez-Novoa L, Lombardi V, Kubota Y, Takeda M. Molecular genetics of Alzheimer’s disease and aging. Methods Find. Exp. Clin. Pharmacol.27(Suppl. A), 1–573 (2005).
  • Cacabelos R. Pharmacogenomics and therapeutic prospects in dementia. Eur. Arch. Psychiatry Clin. Neurosci.258(Suppl. 1), 28–47 (2008).
  • Gatz M, Pedersen NL, Berg S et al. Heritability for Alzheimer’s disease: the study of dementia in Swedish twins. J. Gerontol. A Biol. Sci. Med. Sci.52(2), M117–M125 (1997).
  • Gatz M, Fratiglioni L, Johansson B et al. Complete ascertainment of dementia in the Swedish Twin Registry: the HARMONY study. Neurobiol. Aging26(4), 439–447 (2005).
  • Räihä I, Kaprio J, Koskenvuo M, Rajala T, Sourander L. Alzheimer’s disease in twins. Biomed. Pharmacother.51(3), 101–104 (1997).
  • Pericak-Vance MA, Bass ML, Yamaoka LH et al. Complete genomic screen in late-onset familial Alzheimer’s disease. Neurobiol. Aging19(1 Suppl.), S39–S42 (1998).
  • Kehoe P, Wavrant-De Vrieze F, Crook R et al. A full genome scan for late onset Alzheimer’s disease. Hum. Mol. Genet.8(2), 237–245 (1999).
  • Harold D, Abraham R, Hollingworth P et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet.41(10), 1088–1093 (2009).
  • Pericak-Vance MA, Bebout JL, Gaskell PCJ et al. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am. J. Hum. Genet.48(6), 1034–1050 (1991).
  • Corder EH, Saunders AM, Strittmatter WJ et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science261(5123), 921–923 (1993).
  • Saunders AM, Strittmatter WJ, Schmechel D et al. Association of apolipoprotein E allele e 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology43(8), 1467–1472 (1993).
  • Strittmatter WJ, Saunders AM, Schmechel D et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA90, 1977–1981 (1993).
  • Roses AD. Apolipoprotein E and Alzheimer’s disease. The tip of the susceptibility iceberg. Ann. NY Acad. Sci.855, 738–743 (1998).
  • Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron63(3), 287–303 (2009).
  • Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA277(10), 813–817 (1997).
  • Honig LS, Kukull W, Mayeux R. Atherosclerosis and AD: analysis of data from the US National Alzheimer’s Coordinating Center. Neurology64(3), 494–500 (2005).
  • Kivipelto M, Helkala E-L, Laakso MP et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ322(7300), 1447–1451 (2001).
  • Kivipelto M, Ngandu T, Fratiglioni L et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch. Neurol.62(10), 1556–1560 (2005).
  • Cechetto DF, Hachinski V, Whitehead SN. Vascular risk factors and Alzheimer’s disease. Expert Rev. Neurother.8(5), 743–750 (2008).
  • Bhargava D, Weiner MF, Hynan LS, Diaz-Arrastia R, Lipton AM. Vascular disease and risk factors, rate of progression, and survival in Alzheimer’s disease. J. Geriatr. Psychiatry Neurol.19(2), 78–82 (2006).
  • Kehoe PG, Wilcock GK. Is inhibition of the renin–angiotensin system a new treatment option for Alzheimer’s disease? Lancet Neurol.6(4), 373–378 (2007).
  • Zou K, Michikawa M. Angiotensin-converting enzyme as a potential target for treatment of Alzheimer’s disease: inhibition or activation? Rev. Neurosci.19(4–5), 203–212 (2008).
  • Rocchi A, Orsucci D, Tognoni G, Ceravolo R, Siciliano G. The role of vascular factors in late-onset sporadic Alzheimer’s disease. Genetic and molecular aspects. Curr. Alzheimer Res.6(3), 224–237 (2009).
  • Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet.39, 17–23 (2007).
  • Bertram L. Alzheimer’s disease genetics: current status and future perspectives. Int. Rev. Neurobiol.84, 167–184 (2009).
  • Reiman EM, Webster JA, Myers AJ et al. GAB2 alleles modify Alzheimer’s risk in APOE ε4 carriers. Neuron54(5), 713–720 (2007).
  • Li H, Wetten S, Li L et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch. Neurol.65(1), 45–53 (2008).
  • Bertram L, Lange C, Mullin K et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am. J. Hum. Genet.83, 623–632 (2008).
  • Beecham GW, Martin ER, Li YJ et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am. J. Hum. Genet.84, 35–43 (2009).
  • Carrasquillo MM, Zou F, Pankratz VS et al. Genetic variation in PCDH11X is associated with susceptibility to late-onset Alzheimer’s disease. Nat. Genet.41(2), 192–198 (2009).
  • Lambert J-C, Heath S, Even G et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet.41(10), 1094–1099 (2009).
  • Ertekin-Taner N. Genetics of Alzheimer disease in the pre- and post-GWAS era. Alzheimers Res. Ther.2(1), 3 (2010).
  • Grupe A, Abraham R, Li Y et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum. Mol. Genet.16, 865–873 (2007).
  • Coon KD, Myers AJ, Craig DW et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J. Clin. Psychiatry68, 613–618 (2007).
  • Poduslo SE, Huang R, Huang J, Smith S. Genome screen of late-onset Alzheimer’s extended pedigrees identifies TRPC4AP by haplotype analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet.150B, 50–55 (2009).
  • Abraham R, Moskvina V, Sims R et al. A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med. Genomics1, 44 (2008).
  • Feulner TM, Laws SM, Friedrich P et al. Examination of the current top candidate genes for AD in a genome-wide association study. Mol. Psychiatry15(7), 756–766 (2009).
  • Nizzari M, Venezia V, Repetto E et al. Amyloid precursor protein and presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling. J. Biol. Chem.282(18), 13833–13844 (2007).
  • Chapuis J, Hannequin D, Pasquier F et al. Association study of the GAB2 gene with the risk of developing Alzheimer’s disease. Neurobiol. Dis.30, 103–106 (2008).
  • Sleegers K, Bettens K, Brouwers N et al. Common variation in GRB-associated binding protein 2 (GAB2) and increased risk for Alzheimer dementia. Hum. Mutat.30, E338–E344 (2009).
  • Miyashita A, Arai H, Asada T et al. GAB2 is not associated with late-onset Alzheimer’s disease in Japanese. Eur. J. Hum. Genet.17(5), 682–686 (2009).
  • Ikram MA, Liu F, Oostra BA, Hofman A, van Duijn CM, Breteler MM. The GAB2 gene and the risk of Alzheimer’s disease: replication and meta-analysis. Biol. Psychiatry65(11), 995–999 (2009).
  • Rogaeva E, Meng Y, Lee JH et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet.39(2), 168–177 (2007).
  • Jacobsen L, Madsen P, Moestrup SK et al. Molecular characterization of a novel human hybrid-type receptor that binds the a2-macroglobulin receptor-associated protein. J. Biol. Chem.271(49), 31379–31383 (1996).
  • Li Y, Rowland C, Catanese J et al. SORL1 variants and risk of late-onset Alzheimer’s disease. Neurobiol. Dis.29(2), 293–296 (2008).
  • Lee JH, Cheng R, Schupf N et al. The association between genetic variants in SORL1 and Alzheimer disease in an urban, multiethnic, community-based cohort. Arch. Neurol.64(4), 501–506 (2007).
  • Bettens K, Brouwers N, Engelborghs S, De Deyn PP, Van Broeckhoven C, Sleegers K. SORL1 is genetically associated with increased risk for late-onset Alzheimer disease in the Belgian population. Hum. Mutat.29(5), 769–770 (2008).
  • Minster RL, DeKosky ST, Kamboh MI. No association of SORL1 SNPs with Alzheimer’s disease. Neurosci. Lett.440(2), 190–192 (2008).
  • Shibata N, Ohnuma T, Baba H, Higashi S, Nishioka K, Arai H. Genetic association between SORL1 polymorphisms and Alzheimer’s disease in a Japanese population. Dement. Geriatr. Cogn. Disord.26(2), 161–164 (2008).
  • Webster JA, Myers AJ, Pearson JV et al.Sorl1 as an Alzheimer’s disease predisposition gene? Neurodegener. Dis.5(2), 60–64 (2008).
  • Mayeux R, Hyslop PS. Alzheimer’s disease: advances in trafficking. Lancet Neurol.7(1), 2–3 (2008).
  • Zhao Y, Cui JG, Lukiw WJ. Reduction of sortilin-1 in Alzheimer hippocampus and in cytokine-stressed human brain cells. Neuroreport18(11), 1187–1191 (2007).
  • Sager KL, Wuu J, Leurgans SE et al. Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Ann. Neurol.62(6), 640–647 (2007).
  • Lang R, Gundlach AL, Kofler B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol. Ther.115(2), 177–207 (2007).
  • Chan-Palay V. Galanin hyperinnervates surviving neurons of the human basal nucleus of meynert in dementias of Alzheimer’s and Parkinson’s disease: a hypothesis for the role of galanin in accentuating cholinergic dysfunction in dementia. J. Comp. Neurol.273(4), 543–557 (1988).
  • Mufson EJ, Cochran E, Benzing W, Kordower JH. Galaninergic innervation of the cholinergic vertical limb of the diagonal band (Ch2) and bed nucleus of the stria terminalis in aging, Alzheimer’s disease and Down’s syndrome. Dementia4(5), 237–250 (1993).
  • Baulac S, LaVoie MJ, Kimberly WT et al. Functional γ-secretase complex assembly in Golgi/trans-Golgi network: interactions among presenilin, nicastrin, Aph1, Pen-2, and γ-secretase substrates. Neurobiol. Dis.14(2), 194–204 (2003).
  • Goodman AB. Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J. Cell Physiol.209(3), 598–603 (2006).
  • Blanco P, Sargent CA, Boucher CA, Mitchell M, Affara NA. Conservation of PCDHX in mammals; expression of human X/Y genes predominantly in brain. Mamm. Genome11, 906–914 (2000).
  • Felschow DM, Civin CI, Hoehn GT. Characterization of the tyrosine kinase Tnk1 and its binding with phospholipase C-γ1. Biochem. Biophy. Res. Commun.273(1), 294–301 (2000).
  • Cantley LC, Auger KR, Carpenter C et al. Oncogenes and signal transduction. Cell64(2), 281–302 (1991).
  • Bae YS, Cantley LG, Chen C-S, Kim S-R, Kwon K-S, Rhee SG. Activation of phospholipase C-γ by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem.273(8), 4465–4469 (1998).
  • Fritz IB, Burdzy K, Setchell B, Blaschuk O. Ram rete testis fluid contains a protein (clusterin) which influences cell–cell interactions in vitro.Biol. Reprod.28(5), 1173–1188 (1983).
  • May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE. Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron5(6), 831–839 (1990).
  • Nuutinen T, Suuronen T, Kauppinen A, Salminen A. Clusterin: a forgotten player in Alzheimer’s disease. Brain Res. Rev.61(2), 89–104 (2009).
  • Butler AW, Ng MY, Hamshere ML et al. Meta-analysis of linkage studies for Alzheimer’s disease – a web resource. Neurobiol. Aging30(7), 1037–1047 (2009).
  • Iida K, Mornaghi R, Nussenzweig V. Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus. J. Exp. Med.155(5), 1427–1438 (1982).
  • Wyss-Coray T, Yan F, Lin AH-T et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc. Natl Acad. Sci. USA99(16), 10837–10842 (2002).
  • Gatz M, Reynolds CA, Fratiglioni L et al. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry63, 168–174 (2006).
  • Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci.31(2), 89–97 (2006).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell128(4), 707–719 (2007).
  • Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal nutrition and fetal development. J. Nutr.134(9), 2169–2172 (2004).
  • Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic. Biol. Med.46(9), 1241–1249 (2009).
  • Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol.241(1), 172–182 (2002).
  • Weaver IC, Diorio J, Seckl JR, Szyf M, Meaney MJ. Early environmental regulation of hippocampal glucocorticoid receptor gene expression: characterization of intracellular mediators and potential genomic target sites. Ann. NY Acad. Sci.1024, 182–212 (2004).
  • Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr.135(6), 1382–1386 (2005).
  • Gräff J, Mansuy IM. Epigenetic dysregulation in cognitive disorders. Eur. J. Neurosci.30(1), 1–8 (2009).
  • Cao X, Südhof TC. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science293(5527), 115–120 (2001).
  • Marambaud P, Wen PH, Dutt A et al. A CBP binding transcriptional repressor produced by the PS1/e-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell114(5), 635–645 (2003).
  • Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J.22(24), 6537–6549 (2003).
  • Saura CA, Choi SY, Beglopoulos V et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron42(1), 23–36 (2004).
  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature447(7141), 178–182 (2007).
  • Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett.541(1–3), 145–148 (2003).
  • Scarpa S, Cavallaro RA, D’Anselmi F, Fuso A. Gene silencing through methylation: an epigenetic intervention on Alzheimer disease. J. Alzheimers Dis.9(4), 407–414 (2006).
  • Wu J, Basha MR, Brock B et al. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J. Neurosci.28(1), 3–9 (2008).
  • Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS ONE3(7), e2698 (2008).
  • Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M. Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res. Mol. Brain Res.70(2), 288–292 (1999).
  • Nagane Y, Utsugisawa K, Tohgi H. PCR amplification in bisulfite methylcytosine mapping in the GC-rich promoter region of amyloid precursor protein gene in autopsy human brain. Brain Res. Brain Res. Protoc.5(2), 167–171 (2000).
  • Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and β-amyloid production. Mol Cell. Neurosci.28(1), 195–204 (2005); erratum in: Mol. Cell. Neurosci.32(4), 419 (2006).
  • Reitz C, Mayeux R. Use of genetic variation as biomarkers for Alzheimer’s disease. Ann. NY Acad. Sci.1180, 75–96 (2009).
  • Meyer JM, Breitner JC. Multiple threshold model for the onset of Alzheimer’s disease in the NAS–NRC twin panel. Am J. Med. Genet.81(1), 92–97 (1998).
  • Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry160(4), 636–645 (2003).
  • Gottesman I, Shields J. Genetic theorizing and schizophrenia. Br. J. Psychiatry122(566), 15–30 (1973).
  • Breitner JC, Wyse BW, Anthony JC et al. APOE-ε4 count predicts age when prevalence of AD increases, then declines: the Cache County Study. Neurology53(2), 321–331 (1999); erratum in: Neurology 55(1), 161–162 (2000).
  • Gomez-Isla T, West HL, Rebeck GW et al. Clinical and pathological correlates of apolipoprotein E ε4 in Alzheimer’s disease. Ann. Neurol.39(1), 62–70 (1996).
  • Holmes C, Levy R, McLoughlin DM, Powell JF, Lovestone S. Apolipoprotein E: non-cognitive symptoms and cognitive decline in late onset Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry61(6), 580–583 (1996).
  • Hyman BT, Gomez-Isla T, Rebeck G et al. Epidemiological, clinical, and neuropathological study of apolipoprotein E genotype in Alzheimer’s disease. Ann. NY Acad. Sci.802, 1–5 (1996).
  • Kurz A, Altland K, Lautenschlager N et al. Apolipoprotein E type 4 allele and Alzheimer’s disease: effect on age at onset and relative risk in different age groups. J. Neurol.243(6), 452–456 (1996).
  • Murman DL, Foster NL, Kilgore SP, McDonagh CA, Fink JK. Apolipoprotein E and Alzheimer’s disease: strength of association is related to age at onset. Dementia7(5), 251–255 (1996).
  • Poirier J, Davignon J, Bouthillier D, Kogan S, Bertrand P, Gauthier S. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet342(8873), 697–699 (1993).
  • Roses AD. Alzheimer’s disease: the genetics of risk. Hosp. Pract. (Minneap.)32(7), 51–55, 58–63, 67–69 (1997).
  • Tang MX, Maestre G, Tsai WY et al. Relative risk of Alzheimer disease and age-at-onset distributions, based on APOE genotypes among elderly African Americans, Caucasians, and Hispanics in New York City. Am. J. Hum. Genet.58(3), 574–584 (1996).
  • Corder E, Saunders A, Risch N et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet.7, 180–184 (1994).
  • Kölsch H, Jessen F, Wiltfang J et al. Association of SORL1 gene variants with Alzheimer’s disease. Brain Res.1264, 1–6 (2009).
  • Reynolds C, Hong M-G, Eriksson U et al. Sequence variation in SORL1 and dementia risk in Swedes. Neurogenetics11(1), 139–142 (2010).
  • Welsh-Bohmer KA, Ostbye T, Sanders L et al. Neuropsychological performance in advanced age: influences of demographic factors and apolipoprotein E: findings from the Cache County Memory Study. Clin. Neuropsychol.23(1), 77–99 (2009).
  • Salo A, Ylikoski R, Verkkoniemi A et al. Does apolipoprotein E influence learning and memory in the nondemented oldest old? Int. Psychogeriatr.13(4), 451–459 (2001).
  • Murphy GMJ, Taylor J, Kraemer HC, Yesavage J, Tinklenberg JR. No association between apolipoprotein E e 4 allele and rate of decline in Alzheimer’s disease. Am. J. Psychiatry154(5), 603–608 (1997).
  • Cosentino S, Scarmeas N, Helzner E et al. APOE e 4 allele predicts faster cognitive decline in mild Alzheimer disease. Neurology70(19 Pt 2), 1842–1849 (2008).
  • Wehling E, Lundervold AJ, Standnes B, Gjerstad L, Reinvang I. APOE status and its association to learning and memory performance in middle aged and older Norwegians seeking assessment for memory deficits. Behav. Brain Funct.3, 57 (2007).
  • Hirono N, Hashimoto M, Yasuda M, Kazui H, Mori E. Accelerated memory decline in Alzheimer’s disease with apolipoprotein ε4 allele. J. Neuropsychiatry Clin. Neurosci.15(3), 354–358 (2003).
  • Grünblatt E, Bartl J, Zehetmayer S et al. Gene expression as peripheral biomarkers for sporadic Alzheimer’s disease. Alzheimers Dis.16(3), 627–634 (2009).
  • Holmes C, Arranz MJ, Powell JF, Collier DA, Lovestone S. 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset Alzheimer’s disease. Hum. Mol. Genet.7(9), 1507–1509 (1998).
  • Assal F, Alarcon M, Solomon EC, Masterman D, Geschwind DH, Cummings JL. Association of the serotonin transporter and receptor gene polymorphisms in neuropsychiatric symptoms in Alzheimer disease. Arch. Neurol.61(8), 1249–1253 (2004).
  • Craig D, Hart DJ, Carson R, McIlroy SP, Passmore AP. Psychotic symptoms in Alzheimer’s disease are not influenced by polymorphic variation at the dopamine receptor DRD3 gene. Neurosci. Lett.368(1), 33–36 (2004).
  • Lanari A, Amenta F, Silvestrelli G, Tomassoni D, Parnetti L. Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer’s disease. Mech. Ageing Dev.127(2), 158–165 (2006).
  • Pritchard AL, Pritchard CW, Bentham P, Lendon CL. Role of serotonin transporter polymorphisms in the behavioural and psychological symptoms in probable Alzheimer disease patients. Dement. Geriatr. Cogn. Disord.24(3), 201–206 (2007).
  • Pritchard AL, Harris J, Pritchard CW et al. Role of 5HT 2A and 5HT 2C polymorphisms in behavioural and psychological symptoms of Alzheimer’s disease. Neurobiol. Aging29(3), 341–347 (2008).
  • Sato N, Ueki A, Ueno H, Shinjo H, Morita Y. Dopamine D3 receptor gene polymorphism influences on behavioral and psychological symptoms of dementia (BPSD) in mild dementia of Alzheimer’s type. J. Alzheimers Dis.17(2), 441–448 (2009).
  • Craig D, Hart DJ, McCool K, McIlroy SP, Passmore AP. Apolipoprotein E ε4 allele influences aggressive behaviour in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry75(9), 1327–1330 (2004).
  • Pritchard AL, Harris J, Pritchard CW et al. The effect of the apolipoprotein E gene polymorphisms and haplotypes on behavioural and psychological symptoms in probable Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry78(2), 123–126 (2007).
  • Harwood DG, Barker WW, Ownby RL, St George-Hyslop P, Duara R. Apolipoprotein-E (APO-E) genotype and symptoms of psychosis in Alzheimer’s disease. Am. J. Geriatr. Psychiatry7(2), 119–123 (1999).
  • Hirono N, Mori E, Yasuda M et al. Lack of effect of apolipoprotein E ε4 allele on neuropsychiatric manifestations in Alzheimer’s disease. J. Neuropsychiatry Clin. Neurosci.11(1), 66–70 (1999).
  • Holmes C. Genotype and phenotype in Alzheimer’s disease. Br. J. Psychiatry180(2), 131–134 (2002).
  • McIlroy S, Craig D. Neurobiology and genetics of behavioural syndromes of Alzheimer’s disease. Curr. Alzheimer Res.1(2), 135–142 (2004).
  • Pritchard AL, Ratcliffe L, Sorour E et al. Investigation of dopamine receptors in susceptibility to behavioural and psychological symptoms in Alzheimer’s disease. Int. J. Geriatr. Psychiatry24(9), 1020–1025 (2009).
  • Serretti A, Olgiati P, De Ronchi D. Genetics of Alzheimer’s disease. A rapidly evolving field. J. Alzheimers Dis.12(1), 73–92 (2007).
  • Nacmias B, Tedde A, Forleo P et al. Association between 5-HT(2A) receptor polymorphism and psychotic symptoms in Alzheimer’s disease. Biol. Psychiatry50(6), 472–475 (2001).
  • Rocchi A, Micheli D, Ceravolo R et al. Serotoninergic polymorphisms (5-HTTLPR and 5-HT2A): association studies with psychosis in Alzheimer disease. Genet. Test.7(4), 309–314 (2003).
  • Lam LCW, Tang NLS, Ma SL, Zhang W, Chiu HFK. 5-HT2A T102C receptor polymorphism and neuropsychiatric symptoms in Alzheimer’s disease. Int. J. Geriatr. Psychiatry19(6), 523–526 (2004).
  • Craig D, Donnelly C, Hart D, Carson R, Passmore P. Analysis of the 5HT-2A T102C receptor polymorphism and psychotic symptoms in Alzheimer’s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet.144B(1), 126–128 (2007).
  • Ramanathan S, Glatt SJ. Serotonergic system genes in psychosis of Alzheimer dementia: meta-analysis. Am. J. Geriatr. Psychiatry17(10), 839–846 (2009).
  • Holmes C, Smith H, Ganderton R et al. Psychosis and aggression in Alzheimer’s disease: the effect of dopamine receptor gene variation. J. Neurol. Neurosurg. Psychiatry71(6), 777–779 (2001).
  • Sweet RA, Nimgaonkar VL, Kamboh MI, Lopez OL, Zhang F, DeKosky ST. Dopamine receptor genetic variation, psychosis, and aggression in Alzheimer disease. Arch. Neurol.55(10), 1335–1340 (1998); erratum in: Arch. Neurol.1359(1336), 1042 (2002).
  • DeKosky ST. Taking the next steps in the diagnosis of Alzheimer’s disease: the use of biomarkers. CNS Spectr.13(3 Suppl. 3), 7–10 (2008).
  • Ewers M, Zhong Z, Bürger K et al. Increased CSF-BACE 1 activity is associated with ApoE-e 4 genotype in subjects with mild cognitive impairment and Alzheimer’s disease. Brain131(Pt 5), 1252–1258 (2008).
  • Hampel H, Bürger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement.4(1), 38–48 (2008).
  • Mattsson N, Blennow K, Zetterberg H. CSF biomarkers: pinpointing Alzheimer pathogenesis. Ann. NY Acad. Sci.1180, 28–35 (2009).
  • Blennow K, Hampel H, Weiner DM, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol.6(3), 131–144 (2010).
  • Kölsch H, Jessen F, Wiltfang J et al. Influence of SORL1 gene variants: association with CSF amyloid-β products in probable Alzheimer’s disease. Neurosci. Lett.440(1), 68–71 (2008).
  • Vemuri P, Wiste HJ, Weigand SD et al. Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann. Neurol.67(3), 308–316 (2010).
  • Hinrichs AL, Mintun MA, Head D et al. Cortical binding of Pittsburgh Compound B, an endophenotype for genetic studies of Alzheimer’s disease. Biol. Psychiatry67(6), 581–583 (2010).
  • Herukka SK, Helisalmi S, Hallikainen M, Tervo S, Soininen H, Pirttilae T. CSF Aβ42, tau and phosphorylated tau, APOE ε 4 allele and MCI type in progressive MCI. Neurobiol. Aging28(4), 507–514 (2007).
  • Glodzik-Sobanska L, Pirraglia E, Brys M et al. The effects of normal aging and ApoE genotype on the levels of CSF biomarkers for Alzheimer’s disease. Neurobiol. Aging30(5), 672–681 (2009).
  • Kester MI, Blankenstein MA, Bouwman FH, van Elk EJ, Scheltens P, van der Flier WM. CSF biomarkers in Alzheimer’s disease and controls: associations with APOE genotype are modified by age. J. Alzheimers Dis.16(3), 601–607 (2009).
  • Galasko D, Chang L, Motter R et al. High cerebrospinal fluid tau and low amyloid β42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch. Neurol.55(7), 937–945 (1998).
  • Hulstaert F, Blennow K, Ivanoiu A et al. Improved discrimination of AD patients using β-amyloid(1-42) and tau levels in CSF. Neurology52(8), 1555–1562 (1999).
  • Tapiola T, Pirttilae T, Mehta PD, Alafuzoff I, Lehtovirta M, Soininen H. Relationship between apoE genotype and CSF β-amyloid (1-42) and tau in patients with probable and definite Alzheimers disease. Neurobiol. Aging21(5), 735–740 (2000).
  • Prince JA, Zetterberg H, Andreasen N, Marcusson J, Blennow K. APOE e 4 allele is associated with reduced cerebrospinal fluid levels of Aβ42. Neurology62(11), 2116–2118 (2004).
  • Sunderland T, Mirza N, Putnam KT et al. Cerebrospinal fluid β-amyloid1-42 and tau in control subjects at risk for Alzheimer’s disease: the effect of APOE ε4 allele. Biol. Psychiatry56(9), 670–676 (2004).
  • Riemenschneider M, Schmolke M, Lautenschlager N et al. Association of CSF apolipoprotein E, Aβ42 and cognition in Alzheimers disease. Neurobiol. Aging23(2), 205–211 (2002).
  • Buerger K, Teipel S, Zinkowski R et al. Increased levels of CSF phosphorylated tau in apolipoprotein E ε4 carriers with mild cognitive impairment. Neurosci. Lett.391(1–2), 48–50 (2005).
  • Andersson C, Blennow K, Johansson SE et al. Differential CSF biomarker levels in APOE- ε4-positive and -negative patients with memory impairment. Dement. Geriatr. Cogn. Disord.23(2), 87–95 (2007).
  • Peskind ER, Li G, Shofer J et al. Age and apolipoprotein E*4 allele effects on cerebrospinal fluid β-amyloid 42 in adults with normal cognition. Arch. Neurol.63(7), 936–939 (2006).
  • Mosconi L, De Santi S, Brys M et al. Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E ε4 carriers with subjective memory complaints. Biol. Psychiatry63(6), 609–618 (2008).
  • Morris JC, Roe CM, Xiong C et al. APOE predicts amyloid-β but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol.67(1), 122–131 (2010).
  • Johansson A, Zetterberg H, Hampel H et al. Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimers disease. Dement. Geriatr. Cogn. Disord.20(6), 367–374 (2005).
  • Kauwe J, Wang J, Mayo K et al. Alzheimer’s disease risk variants show association with cerebrospinal fluid amyloid β. Neurogenetics10(1), 13–17 (2009).
  • Sleegers K, den Heijer T, van Dijk EJ et al.ACE gene is associated with Alzheimer’s disease and atrophy of hippocampus and amygdala. Neurobiol. Aging26(8), 1153–1159 (2005).
  • Silverman DHS, Small GW, Chang CY et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA286(17), 2120–2127 (2001).
  • Small GW, Mazziotta JC, Collins MT et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA273(12), 942–947 (1995).
  • Reiman EM, Caselli RJ, Yun LS et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the e 4 allele for apolipoprotein E. N. Engl. J. Med.334(12), 752–758 (1996).
  • Small GW, Ercoli LM, Silverman DHS et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA97(11), 6037–6042 (2000).
  • Drzezga A, Riemenschneider M, Strassner B et al. Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology64(1), 102–107 (2005).
  • Corder EH, Jelic V, Basun H et al. No difference in cerebral glucose metabolism in patients with Alzheimer disease and differing apolipoprotein E genotypes. Arch. Neurol.54(3), 273–277 (1997).
  • Hirono N, Mori E, Yasuda M et al. Lack of association of apolipoprotein E ε4 allele dose with cerebral glucose metabolism in Alzheimer disease. Alzheimer Dis. Assoc. Disord.12(4), 362–367 (1998).
  • Hirono N, Hashimoto M, Yasuda M et al. The effect of APOE ε4 allele on cerebral glucose metabolism in AD is a function of age at onset. Neurology58(5), 743–750 (2002).
  • Thambisetty M, Beason-Held L, An Y, Kraut MA, Resnick SM. APOE ε4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch. Neurol.67(1), 93–98 (2010).
  • Hogh P, Knudsen GM, Kjaer KH, Jorgensen OS, Paulson OB, Waldemar G. Single photon emission computed tomography and apolipoprotein E in Alzheimer’s disease: impact of the ε4 allele on regional cerebral blood flow. J. Geriatr. Psychiatry Neurol.14(1), 42–51 (2001).
  • Bookheimer S, Burggren A. APOE-4 genotype and neurophysiological vulnerability to Alzheimer’s and cognitive aging. Annu. Rev. Clin. Psychol.5(1), 343–362 (2009).
  • Bookheimer SY, Strojwas MH, Cohen MS et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N. Engl. J. Med.343(7), 450–456 (2000).
  • Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology64(3), 501–508 (2005).
  • Nordberg A. Amyloid imaging in Alzheimer’s disease. Neuropsychologia46(6), 1636–1641 (2008).
  • Small GW, Kepe V, Ercoli LM et al. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med.355(25), 2652–2663 (2006).
  • Small GW, Siddarth P, Burggren AC et al. Influence of cognitive status, age, and APOE-4 genetic risk on brain FDDNP positron-emission tomography imaging in persons without dementia. Arch. Gen. Psychiatry66(1), 81–87 (2009).
  • Drzezga A, Grimmer T, Henriksen G et al. Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology72(17), 1487–1494 (2009).
  • Rowe CC, Ng S, Ackermann U et al. Imaging β-amyloid burden in aging and dementia. Neurology68(20), 1718–1725 (2007).
  • Reiman EM, Chen K, Liu X et al. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc. Natl Acad. Sci. USA106(16), 6820–6825 (2009).
  • Wahlund LO, Almkvist O, Blennow K et al. Evidence-based evaluation of magnetic resonance imaging as a diagnostic tool in dementia workup. Top Magn. Reson. Imaging16(6), 427–437 (2005).
  • Teipel SJ, Meindl T, Grinberg L, Heinsen H, Hampel H. Novel MRI techniques in the assessment of dementia. Eur. J. Nucl. Med. Mol. Imaging35(Suppl. 1), S58–69 (2008).
  • Plassman BL, Welsh-Bohmer KA, Bigler ED et al. Apolipoprotein E e 4 allele and hippocampal volume in twins with normal cognition. Neurology48(4), 985–989 (1997).
  • Lind J, Larsson A, Persson J et al. Reduced hippocampal volume in non-demented carriers of the apolipoprotein E ε4: relation to chronological age and recognition memory. Neurosci. Lett.396(1), 23–27 (2006).
  • Schmidt H, Schmidt R, Fazekas F et al. Apolipoprotein E ε4 allele in the normal elderly: neuropsychologic and brain MRI correlates. Clin. Genet.50(5), 293–299 (1996).
  • Cherbuin N, Anstey KJ, Sachdev PS et al. Total and regional gray matter volume is not related to APOE*ε4 status in a community sample of middle-aged individuals. J. Gerontol. A Biol. Sci. Med. Sci.63(5), 501–504 (2008).
  • Ystad MA, Lundervold AJ, Wehling E et al. Hippocampal volumes are important predictors for memory function in elderly women. BMC Med. Imaging9, 17 (2009).
  • Moffat SD, Szekely CA, Zonderman AB, Kabani NJ, Resnick SM. Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology55(1), 134–136 (2000).
  • Cohen RM, Small C, Lalonde F, Friz J, Sunderland T. Effect of apolipoprotein E genotype on hippocampal volume loss in aging healthy women. Neurology57(12), 2223–2228 (2001).
  • Jak AJ, Houston WS, Nagel BJ, Corey-Bloom J, Bondi MW. Differential cross-sectional and longitudinal impact of APOE genotype on hippocampal volumes in nondemented older adults. Dement. Geriatr. Cogn. Disord.23(6), 382–389 (2007).
  • Reiman EM, Uecker A, Caselli RJ et al. Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer’s disease. Ann. Neurol.44(2), 288–291 (1998).
  • Jack CRJ, Petersen RC, Xu YC et al. Hippocampal atrophy and apolipoprotein E genotype are independently associated with Alzheimer’s disease. Ann. Neurol.43(3), 303–310 (1998).
  • Mori E, Lee K, Yasuda M et al. Accelerated hippocampal atrophy in Alzheimer’s disease with apolipoprotein E ε4 allele. Ann. Neurol.51(2), 209–214 (2002).
  • Schuff N, Woerner N, Boreta L et al. MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain132(Pt 4), 1067–1077 (2009).
  • van de Pol LA, van der Flier WM, Korf ES, Fox NC, Barkhof F, Scheltens P. Baseline predictors of rates of hippocampal atrophy in mild cognitive impairment. Neurology69(15), 1491–1497 (2007).
  • Scarmeas N, Stern Y. Imaging studies and APOE genotype in persons at risk for Alzheimer’s disease. Curr. Psychiatry Rep.8(1), 11–17 (2006).
  • Roses AD. The medical and economic roles of pipeline pharmacogenetics: Alzheimer’s disease as a model of efficacy and HLA-B*5701 as a model of safety. Neuropsychopharmacology34(1), 6–17 (2009).
  • Ising M, Lucae S, Binder EB et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch. Gen. Psychiatry66(9), 966–975 (2009).
  • Gupta M, Kaur H, Grover S, Kukreti R. Pharmacogenomics and treatment for dementia induced by Alzheimers disease. Pharmacogenomics9(7), 895–903 (2008).
  • Sleegers K, Lambert J-C, Bertram L, Cruts M, Amouyel P, Van Broeckhoven C. The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet.26(2), 84–93 (2010).
  • Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell101(1), 25–33 (2000).
  • Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature404, 293–296 (2000).
  • Aigner A. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J. Biotechnology124(1), 12–25 (2006).
  • Pushparaj PN, Melendez AJ. Short interfering RNA (siRNA) as a novel therapeutic. Clin. Exp. Pharmacol. Physiol.33(5–6), 504–510 (2006).
  • Kao SC, Krichevsky A, Kosik K, Tsai L-H. BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem.279, 1942–1949 (2003).
  • Azorsa D, Robeson RH, Frost D et al. High-content siRNA screening of the kinome identifies kinases involved in Alzheimer’s disease-related tau hyperphosphorylation. BMC Genomics11(1), 25 (2010).
  • Farah MH. RNAi silencing in mouse models of neurodegenerative diseases. Curr. Drug Deliv.4(2), 161–167 (2007).
  • Koutsilieri E, Rethwilm A, Scheller C. The therapeutic potential of siRNA in gene therapy of neurodegenerative disorders. J. Neural Transm. Suppl.72, 43–49 (2007).
  • Orlacchio A, Bernardi G, Orlacchio A, Martino S. RNA interference as a tool for Alzheimer’s disease therapy. Mini Rev. Med. Chem.7(11), 1166–1176 (2007).
  • Crentsil V. The pharmacogenomics of Alzheimer’s disease. Ageing Res. Rev.3(2), 153–169 (2004).
  • Poirier J. Apolipoprotein E represents a potent gene-based therapeutic target for the treatment of sporadic Alzheimer’s disease. Alzheimers Dement.4(1 Suppl. 1), S91–S97 (2008).
  • Lahiri DK. Apolipoprotein E as a target for developing new therapeutics for Alzheimer’s disease based on studies from protein, RNA, and regulatory region of the gene. J. Mol. Neurosci.23(3), 225–233 (2004).
  • Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci.9(10), 768–778 (2008).
  • Luque FA, Jaffe SL. The molecular and cellular pathogenesis of dementia of the Alzheimer’s type: an overview. Int. Rev. Neurobiol.84, 151–165 (2009).
  • Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br. J. Radiol.80(Spec. No 2), S160–S167 (2007).
  • Hampel H, Frank R, Broich K et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. (2010) (In Press).
  • Nordberg A. Amyloid plaque imaging in vivo: current achievement and future prospects. Eur. J. Nucl. Med. Mol. Imaging35(Suppl. 1), S46–S50 (2008).
  • Schneider P, Hampel H, Buerger K. Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neurosci. Ther.15(4), 358–374 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.