106
Views
11
CrossRef citations to date
0
Altmetric
Review

Systems biology and modeling in neuroblastoma: practicalities and perspectives

, , , , &
Pages 131-145 | Published online: 09 Jan 2014

References

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet369(9579), 2106–2120 (2007).
  • Castleberry RP. Neuroblastoma. Eur. J. Cancer33(9), 1430–1437 (1997).
  • Grimmer MR, Weiss WA. Childhood tumors of the nervous system as disorders of normal development. Curr. Opin. Pediatr.18(6), 634–638 (2006).
  • Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer3(3), 203–216 (2003).
  • Tanaka T, Lehara T, Sugimoto T et al. Diversity in neuroblastomas and discrimination of the risk to progress. Cancer Lett.228(1–2), 267–270 (2005).
  • D’Angio GJ, AE Evans, CE Koop. Special pattern of widespread neuroblastoma with a favourable prognosis. Lancet1(7708), 1046–1049 (1971).
  • Monclair T, Brodeur GM, Ambros PF et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J. Clin. Oncol.27(2), 298–303 (2009).
  • Brodeur GM, Pritchard J, Berthold F et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J. Clin. Oncol.11(8), 1466–1477 (1993).
  • Shimada H, Chatten J, Newton WA Jr et al. Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J. Natl Cancer Inst.73(2), 405–416 (1984).
  • Shimada H, Ambros IM, Dehner LP, Hata J, Joshi W, Roald B. Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer86(2), 349–363 (1999).
  • London WB, Castleberry RP, Matthay KK et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol.23(27), 6459–6465 (2005).
  • Riley RD, Heney D, Jones DR et al. A systematic review of molecular and biological tumor markers in neuroblastoma. Clin. Cancer Res.10(1 Pt 1), 4–12 (2004).
  • Cohn SL, Pearson AD, London WB et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J. Clin. Oncol.27(2), 289–297 (2009).
  • Seeger RC, Brodeur GM, Sather H et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med.313(18), 1111–1116 (1985).
  • Bagatell R, Rumcheva P, London WB et al. Outcomes of children with intermediate-risk neuroblastoma after treatment stratified by MYCN status and tumor cell ploidy. J. Clin. Oncol.23(34), 8819–8827 (2005).
  • Lehara T, Hosoi H, Akazawa K et al.MYCN gene amplification is a powerful prognostic factor even in infantile neuroblastoma detected by mass screening. Br. J. Cancer94(10), 1510–1515 (2006).
  • Kaneko Y, Knudson AG. Mechanism and relevance of ploidy in neuroblastoma. Genes Chromosomes Cancer29(2), 89–95 (2000).
  • Spitz R, Betts DR, Simon T et al. Favorable outcome of triploid neuroblastomas: a contribution to the special oncogenesis of neuroblastoma. Cancer Genet. Cytogenet.167(1), 51–56 (2006).
  • Stallings RL, Carty P McArdle L et al. Molecular cytogenetic analysis of recurrent unbalanced t(11;17) in neuroblastoma. Cancer Genet. Cytogenet.154(1), 44–51 (2004).
  • Martinsson T, Sjöberg RM, Hedborg F, Kogner P. Deletion of chromosome 1p loci and microsatellite instability in neuroblastomas analyzed with short-tandem repeat polymorphisms. Cancer Res.55(23), 5681–5686 (1995).
  • Bown N, Cotterill S, Lastowska M et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N. Engl. J. Med.340(25), 1954–1961 (1999).
  • Caren H, Abel F, Kogner P, Martinsson T. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem. J.416(2), 153–159 (2008).
  • Diskin SJ, Hou C, Glessner JT et al. Copy number variation at 1q21.1 associated with neuroblastoma. Nature459(7249), 987–991 (2009).
  • Villamon E, Piqueras M, Mackintosh C et al. Comparison of different techniques for the detection of genetic risk-identifying chromosomal gains and losses in neuroblastoma. Virchows Arch.453(1), 47–55 (2008).
  • Schramm A, Schulte JH, Astrahantseff K et al. Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett.228(1–2), 143–153 (2005).
  • Taran K, Kobos J, Sitkiewicz A, Sporny S. Estimation of prognostic value of CD44 expression in neuroblastic tumours in children. Folia Neuropathol.45(3), 126–132 (2007).
  • Castel V, Canete A. A comparison of current neuroblastoma chemotherapeutics. Expert Opin. Pharmacother.5(1), 71–80 (2004).
  • Tonini GP, Pistoia V. Molecularly guided therapy of neuroblastoma: a review of different approaches. Curr. Pharm. Des.12(18), 2303–2317 (2006).
  • Bruggeman FJ, Westerhoff HV. The nature of systems biology. Trends Microbiol.15(1), 45–50 (2007).
  • Han JD. Understanding biological functions through molecular networks. Cell Res.18(2), 224–237 (2008).
  • Kitano H. Systems biology: a brief overview. Science295(5560), 1662–1664 (2002).
  • Naylor S, Culbertson AW, Valentine SJ, Towards a systems level analysis of health and nutrition. Curr. Opin. Biotechnol.19(2), 100–109 (2008).
  • Pache RA, Zanzoni A, Naval J, Mas JM, Aloy P. Towards a molecular characterisation of pathological pathways. FEBS Lett.582(8), 1259–1265 (2008).
  • Ho RL, Lieu CA. Systems biology: an evolving approach in drug discovery and development. Drugs R D9(4), 203–216 (2008).
  • Keskin O, Gursoy A, Ma B, Nussinov R. Towards drugs targeting multiple proteins in a systems biology approach. Curr. Top. Med. Chem.7(10), 943–951 (2007).
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol.4(11), 682–690 (2008).
  • Schrattenholz A, Soskic V. What does systems biology mean for drug development? Curr. Med. Chem.15(15), 1520–1528 (2008).
  • Dietel M, Schafer R. Systems pathology – or how to solve the complex problem of predictive pathology. Virchows Arch.453(4), 309–312 (2008).
  • Nicholson JK. Global systems biology, personalized medicine and molecular epidemiology. Mol. Syst. Biol2, 52 (2006).
  • Feng X, Liu X, Luo Q, Liu BF. Mass spectrometry in systems biology: an overview. Mass Spectrom. Rev.27(6), 635–660 (2008).
  • Teng X, Xiao H. Perspectives of DNA microarray and next-generation DNA sequencing technologies. Sci. China C Life Sci.52(1), 7–16 (2009).
  • Klipp E, Liebermeister W. Mathematical modeling of intracellular signaling pathways. BMC Neurosci.7(Suppl. 1), S10 (2006).
  • Watterson S, Marshall S, Ghazal P. Logic models of pathway biology. Drug Discov. Today13(9–10), 447–456 (2008).
  • Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R. Gene regulatory network inference: data integration in dynamic models – a review. Biosystems96(1), 86–103 (2009).
  • van Riel NA. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinform.7(4), 364–374 (2006).
  • Ghosh D, Poisson LM. “Omics” data and levels of evidence for biomarker discovery. Genomics93(1), 13–16 (2009).
  • Raffaghello L, Marimpietri D, Pagnan G et al. Anti-GD2 monoclonal antibody immunotherapy: a promising strategy in the prevention of neuroblastoma relapse. Cancer Lett.197(1–2), 205–209 (2003).
  • Taggart D, Dubois S, Matthay KK. Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q J Nucl. Med. Mol. Imaging52(4), 403–418 (2008).
  • Brodeur GM. Genetics of embryonal tumours of childhood: retinoblastoma, Wilms’ tumour and neuroblastoma. Cancer Surv.25, 67–99 (1995).
  • Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol.6(8), 635–645 (2005).
  • Noble D. Computational models of the heart and their use in assessing the actions of drugs. J. Pharmacol. Sci.107(2), 107–117 (2008).
  • Bizzarri M, Cucina A, Conti F, D’Anselmi F. Beyond the oncogene paradigm: understanding complexity in cancerogenesis. Acta Biotheoretica56(3), 173–196 (2008).
  • Matthay KK, Villablanca JG, Seeger RC et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N. Engl. J. Med.341(16), 1165– 1173 (1999).
  • Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. Cancer Lett.197(1–2), 185–192 (2003).
  • Matthay KK, Reynolds CP, Seeger RC et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J. Clin. Oncol.27(7), 1007–1013 (2009).
  • Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer3(3), 203–216 (2003).
  • Hurlin PJ, Dezfouli S. Functions of myc:max in the control of cell proliferation and tumorigenesis. Int. Rev. Cytol.238, 183–226 (2004).
  • Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin. Cancer Biol.16(4), 253–264 (2006).
  • Alaminos M, Gerald WL, Cheung NK. Prognostic value of MYCN and ID2 overexpression in neuroblastoma. Pediatr. Blood Cancer45(7), 909–915 (2005).
  • Hermeking H, Rago C, Schuhmacher M et al. Identification of CDK4 as a target of c-MYC. Proc. Natl Acad. Sci. USA97(5), 2229–2234 (2000).
  • Yang W, Shen J, Wu M et al. Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene20(14), 1688–1702 (2001).
  • Seoane J, Le HV, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature419(6908), 729–734 (2002).
  • Staller P, Peukert K, Kiermaier A et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell. Biol.3(4), 392–399 (2001).
  • Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature382(6591), 511–517 (1996).
  • Coller HA, Grandori C, Tamayo P et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA97(7), 3260–3265 (2000).
  • Strieder V, Lutz W. E2F proteins regulate MYCN expression in neuroblastomas. J. Biol. Chem.278(5), 2983–2989 (2003).
  • De los Santos M, Zambrano A, Aranda A. Combined effects of retinoic acid and histone deacetylase inhibitors on human neuroblastoma SH-SY5Y cells. Mol. Cancer Ther.6(4), 1425–1432 (2007).
  • Cheung B, Hocker JE, Smith SA, Norris MD, Haber M, Marshall GM. Favorable prognostic significance of high-level retinoic acid receptor β expression in neuroblastoma mediated by effects on cell cycle regulation. Oncogene17(6), 751–759 (1998).
  • Villani MG, Appierto V, Cavadini E et al. 4-oxo-fenretinide, a recently identified fenretinide metabolite, induces marked G2-M cell cycle arrest and apoptosis in fenretinide-sensitive and fenretinide-resistant cell lines. Cancer Res.66(6), 3238–3247 (2006).
  • Yuza Y, Agawa M. Gene and protein expression profiling during differentiation of neuroblastoma cells triggered by 13-cis retinoic acid. J. Pediatr. Hematol. Oncol.25(9), 715–720 (2003).
  • Reynolds CP, Wang Y, Melton LJ, Einhorn PA, Slamon DJ, Maurer BJ. Retinoic-acid-resistant neuroblastoma cell lines show altered MYC regulation and high sensitivity to fenretinide. Med. Pediatr. Oncol.35(6), 597–602 (2000).
  • Silchenko A, Tass P. Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol. Cybern.98(1), 61–74 (2008).
  • Chan HS, Gaille BL, DeBoer G et al.MYCN protein expression as a predictor of neuroblastoma prognosis. Clin. Cancer Res.3(10), 1699–1706 (1997).
  • Bordow SB, Norris MD, Haber PS, Marshall GM, Haber M. Prognostic significance of MYCN oncogene expression in childhood neuroblastoma. J. Clin. Oncol.16(10), 3286–3294 (1998).
  • Cohn SL, London WB, Haung D et al. MYCN expression is not prognostic of adverse outcome in advanced-stage neuroblastoma with nonamplified MYCN. J. Clin. Oncol.18(21), 3604–3613 (2000).
  • de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J. Computat. Biol.9(1), 67–103 (2002).
  • Ashyraliyev M, Fornekong-Nanfack Y, Kaandrop JA, Blom JG. Systems biology: parameter estimation for biochemical models. FEBS J.276(4), 886–902 (2009).
  • Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. A primer on learning in Bayesian networks for computational biology. PLoS Comput. Biol.3(8), e129 (2007).
  • Venancio TM, Aravind L. Reconstructing prokaryotic transcriptional regulatory networks: lessons from actinobacteria. J. Biol.8(3), 29 (2009).
  • Herrgard MJ, Swainston N, Dobson P et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotech.26(10), 1155–1160 (2008).
  • Ideker T, Thorsson V, Ranish JA et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292(5518), 929–934 (2001).
  • Chang WC, Li CW, Chen BS. Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinformatics6, 44 (2005).
  • Edgar D, Kenny S, Almond S, Murray P. Topography, stem cell behaviour, and organogenesis. Pediatr. Surg. Int.20(10), 737–740 (2004).
  • Brandman O, Meyer T. Feedback loops shape cellular signals in space and time. Science322(5900), 390–395 (2008).
  • Ankers JM, Spiller DG, White MR, Harper CV. Spatio – temporal protein dynamics in single living cells. Curr. Opin. Biotechnol.19(4), 375–380 (2008).
  • Werner S, Krieg T, Smola H. Keratinocyte – fibroblast interactions in wound healing. J. Invest. Dermatol.127(5), 998–1008 (2007).
  • Fellin T. Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem.108(3), 533–544 (2009).
  • Ruff RL. Neurophysiology of the neuromuscular junction: overview. Ann. NY Acad. Sci.998, 1–10 (2003).
  • Sell H, Dietze-Schroeder D, Eckel J. The adipocyte–myocyte axis in insulin resistance. Trends Endocrinol. Metab.17(10), 416–422 (2006).
  • Fernandez-Gonzalez R, Barcellos-Hoff MH, Ortiz-de-Solorzano C. A tool for the quantitative spatial analysis of complex cellular systems. IEEE Trans. Image Process.14(9), 1300–1313 (2005).
  • Wu FT, Stefanini MO, MacGabhann F, Popel AS. A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap. PLoS ONE4(4), e5108 (2009).
  • Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature409(6822), 860–921 (2001).
  • International_HapMap_Consortium. The International HapMap Project. Nature426(6968), 789–796 (2003).
  • Auer H, Newsom DL, Kornacker K. Expression profiling using Affymetrix GeneChip microarrays. Methods Mol. Biol.509, 35–46 (2009).
  • Matsumura H, Krüger DH, Kahl G, Terauchi R. SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr. Pharm. Biotechnol.9(5), 368–374 (2008).
  • Desiere F. Towards a systems biology understanding of human health: interplay between genotype, environment and nutrition. Biotechnol. Annu. Rev.10, 51–84 (2004).
  • Mariman EC. Nutrigenomics and nutrigenetics: the ‘omics’ revolution in nutritional science. Biotechnol. Appl. Biochem.44(Pt 3), 119–128 (2006).
  • Robles TF, Kiecolt-Glaser JK. The physiology of marriage: pathways to health. Physiol. Behav.79(3), 409–416 (2003).
  • Varki A, Geschwind DH, Eichler EE. Explaining human uniqueness: genome interactions with environment, behaviour and culture. Nat. Rev. Genet.9(10), 749–763 (2008).
  • Knutsson A. Health disorders of shift workers. Occup. Med. (Lond.)53(2), 103–108 (2003).
  • Cole SW, Hawkley LC, Arevalo JM, Sung CY, Rose RM, Cacioppo JT. Social regulation of gene expression in human leukocytes. Genome Biol.8(9), R189 (2007).
  • Brazma A, Hingamp P, Quackenbush J et al. Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat. Genet.29(4), 365–371 (2001).
  • Bustin SA, Benes V, Garson JA et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem.55(4), 611–622 (2009).
  • Hucka M, Finney A, Bornsteiin BJ et al. Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Syst. Biol. (Stevenage)1(1), 41–53 (2004).
  • Hunter PJ. The IUPS Physiome Project: a framework for computational physiology. Prog. Biophys. Mol. Biol.85(2–3), 551–569 (2004).
  • Bilke S, Chen QR, Westerman F, Schwab M, Catchpoole D, Khan J. Inferring a tumor progression model for neuroblastoma from genomic data. J. Clin. Oncol.23(29), 7322–7331 (2005).
  • Panetta JC, Schaiquevich P, Santana VM, Stewart CF. Using pharmacokinetic and pharmacodynamic modeling and simulation to evaluate importance of schedule in topotecan therapy for pediatric neuroblastoma. Clin. Cancer Res.14(1), 318–325 (2008).
  • Hunsberger S, Albert PS, London WB. A finite mixture survival model to characterize risk groups of neuroblastoma. Stat. Med.28(8), 1301–1314 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.