86
Views
7
CrossRef citations to date
0
Altmetric
Review

Molecular diagnosis of genetic iron-overload disorders

, , , , , , & show all
Pages 755-763 | Published online: 09 Jan 2014

References

  • Brissot P, Troadec MB, Bardou-Jacquet E et al. Current approach to hemochromatosis. Blood Rev.22(4), 195–210 (2008).
  • Wallace DF, Subramaniam VN. Non-HFE haemochromatosis. World J. Gastroenterol.13(35), 4690–4698 (2007).
  • Feder JN, Gnirke A, Thomas W et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet.13(4), 399–408 (1996).
  • Meynard D, Kautz L, Darnaud V, Canonne-Hergaux F, Coppin H, Roth MP. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat. Genet.41(4), 478–481 (2009).
  • Pantopoulos K. Function of the hemochromatosis protein HFE: lessons from animal models. World J. Gastroenterol.14(45), 6893–6901 (2008).
  • Pigeon C, Ilyin G, Courselaud B et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem.276(11), 7811–7819 (2001).
  • Nicolas G, Bennoun M, Devaux I et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl Acad. Sci. USA98(15), 8780–8785 (2001).
  • Nicolas G, Viatte L, Bennoun M, Beaumont C, Kahn A, Vaulont S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol. Dis.29(3), 327–335 (2002).
  • Nemeth E, Ganz T. The role of hepcidin in iron metabolism. Acta Haematol.122(2–3), 78–86 (2009).
  • Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J. Clin. Invest.117(7), 1933–1939 (2007).
  • Truksa J, Peng H, Lee P, Beutler E. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin1 expression independently of Hfe, transferrin receptor 2. Proc. Natl Acad. Sci. USA103(27), 10289–10293 (2006).
  • Babitt JL, Huang FW, Wrighting DM et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet.38, 531–539 (2006).
  • Kautz L, Meynard D, Besson-Fournier C et al. BMP/SMAD signaling is not enhanced in Hfe-deficient mice despite increased Bmp6 expression. Blood114(12), 2515–2520 (2009).
  • Corradini E, Garuti C, Montosi G et al. Bone morphogenetic protein signaling is impaired in a Hfe knockout mouse model of hemochromatosis. Gastroenterology137(4), 1489–1497 (2009).
  • Ramey G, Deschemin JC, Vaulont S. Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes. Haematologica94(6), 765–772 (2009).
  • Hershko C, Peto TE. Non-transferrin plasma iron. Br. J. Haematol.66(2), 149–151 (1987).
  • Brissot P, Wright TL, Ma WL, Weisiger RA. Efficient clearance of non-transferrin-bound iron by rat liver. Implications for hepatic iron loading in iron overload states. J. Clin. Invest.76(4), 1463–1470 (1985).
  • Esposito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI. Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood102(7), 2670–2677 (2003).
  • Le Lan C, Loreal O, Cohen T et al. Redox active plasma iron in C282Y/C282Y hemochromatosis. Blood105(11), 4527–4531 (2005).
  • Brissot P. Haemochromatoses. New understanding, new treatments. Gastroenterol. Clin. Biol.33(8–9), 859–867 (2009).
  • Distante S, Berg JP, Lande K, Haug E, Bell H. HFE gene mutation (C282Y) and phenotypic expression among a hospitalised population in a high prevalence area of haemochromatosis. Gut47(4), 575–579 (2000).
  • Adams PC, Reboussin DM, Barton JC et al. Hemochromatosis and iron-overload screening in a racially diverse population. N. Engl. J. Med.352(17), 1769–1778 (2005).
  • McLaren GD, McLaren CE, Adams PC et al. Clinical manifestations of hemochromatosis in HFE C282Y homozygotes identified by screening. Can. J. Gastroenterol.22(11), 923–930 (2008).
  • Allen KJ, Gurrin LC, Constantine CC et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N. Engl. J. Med.358(3), 221–230 (2008).
  • Adams P, Brissot P, Powell LW. EASL International Consensus Conference on Haemochromatosis. J. Hepatol.33(3), 485–504 (2000).
  • Bensaid M, Fruchon S, Mazeres C, Bahram S, Roth MP, Coppin H. Multigenic control of hepatic iron loading in a murine model of hemochromatosis. Gastroenterology126(5), 1400–1408 (2004).
  • Millet J, Dehais V, Bourgain C et al. Common variants in the BMP2, BMP4, and HJV genes of the hepcidin regulation pathway module HFE hemochromatosis penetrance. Am. J. Human Genet.81, 799–807 (2007).
  • Milet J, Le Gac G, Scotet V et al. A common SNP near BMP2 is associated with severity of the iron burden in HFE p.C282Y homozygous patients: a follow-up study. Blood Cells Mol. Dis.44(1), 34–37 (2009).
  • Niederau C, Fischer R, Purschel A, Stremmel W, Haussinger D, Strohmeyer G. Long-term survival in patients with hereditary hemochromatosis. Gastroenterology110(4), 1107–1119 (1996).
  • Falize L, Guillygomarc’h A, Perrin M et al. Reversibility of hepatic fibrosis in treated genetic hemochromatosis: a study of 36 cases. Hepatology44(2), 472–477 (2006).
  • Camaschella C, Poggiali E. Towards explaining “unexplained hyperferritinemia”. Haematologica94(3), 307–309 (2009).
  • Aguilar Martinez P, Schved JF, Brissot P. The evaluation of hyperferritinemia: an updated strategy based on advances in detecting genetic abnormalities. Am. J. Gastroenterol.100, 1185–1194 (2005).
  • Gandon Y, Olivié D, Guyader D et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet33, 338–343 (2004).
  • St Pierre TG, Clark PR, Chua-anusorn W et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood105(2), 855–861 (2005).
  • Anderson LJ, Holden S, Davis B et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur. Heart. J.22(23), 2171–2179 (2001).
  • Jouanolle AM, Fergelot P, Gandon G, Yaouanq J, Le Gall JY, David V. A candidate gene for hemochromatosis: frequency of the C282Y and H63D mutations. Hum. Genet.100(5–6), 544–547 (1997).
  • Gurrin LC, Bertalli NA, Dalton GW et al. HFE C282Y/H63D compound heterozygotes are at low risk of hemochromatosis-related morbidity. Hepatology50(1), 94–101 (2009).
  • Tomatsu S, Orii KO, Fleming RE et al. Contribution of the H63D mutation in HFE to murine hereditary hemochromatosis. Proc. Natl Acad. Sci. USA100(26), 15788–15793 (2003).
  • Zoller H, Cox TM. Hemochromatosis: genetic testing and clinical practice. Clin. Gastroenterol. Hepatol.3(10), 945–958 (2005).
  • Kinkely SM, Brown BD, Lyng AT et al. Absence of overt iron overload in two individuals compound heterozygotes for a 22 base pair deletion of exon 2 and the C282Y missense mutation of the HFE gene. Clin. Genet.63(2), 163–165 (2003).
  • Barton JC, West C, Lee PL, Beutler E. A previously undescribed frameshift deletion mutation of HFE (c.del277; G93fs) associated with hemochromatosis and iron overload in a C282Y heterozygote. Clin. Genet.66(3), 214–216 (2004).
  • Le Gac G, Congiu R, Gourlaouen I, Cau M, Ferec C, Melis MA. Homozygous deletion of HFE is the common cause of hemochromatosis in Sardinia. Haematologica95(4), 685–687 (2009).
  • Merryweather-Clarke AT, Cadet E, Bomford A et al. Digenic inheritance of mutations in HAMP and HFE results in different types of haemochromatosis. Hum. Mol. Genet.12(17), 2241–2247 (2003).
  • Le Gac G, Gourlaouen I, Ronsin C et al. Homozygous deletion of HFE produces a phenotype similar to the HFE p.C282Y/p.C282Y genotype. Blood112(13), 5238–5240 (2008).
  • Pelucchi S, Mariani R, Bertola F, Arosio C, Piperno A. Homozygous deletion of HFE: the Sardinian hemochromatosis? Blood113(16), 3886 (2009).
  • Cukjati M, Koren S, Curin Serbec V, Vidan-Jeras B, Rupreht R. A novel homozygous frameshift deletion c.471del of HFE associated with hemochromatosis. Clin. Genet.71(4), 350–353 (2007).
  • Pointon JJ, Lok CY, Shearman JD et al. A novel HFE mutation (c.del478) results in nonsense-mediated decay of the mutant transcript in a hemochromatosis patient. Blood Cells Mol. Dis.43(2), 194–198 (2009).
  • Papanikolaou G, Samuels ME, Ludwig EH et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat. Genet.36(1), 77–82 (2004).
  • Roetto A, Papanikolaou G, Politou M et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet.33(1), 21–22 (2003).
  • Gehrke SG, Pietrangelo A, Kascak M et al. HJV gene mutations in European patients with juvenile hemochromatosis. Clin. Genet.67(5), 425–428 (2005).
  • Lok CY, Merryweather-Clarke AT, Viprakasit V et al. Iron overload in the Asian community. Blood114(1), 20–25 (2009).
  • Matthes T, Aguilar-Martinez P, Pizzi-Bosman L et al. Severe hemochromatosis in a Portuguese family associated with a new mutation in the 5´-UTR of the HAMP gene. Blood104(7), 2181–2183 (2004).
  • Lanzara C, Roetto A, Daraio F et al. Spectrum of hemojuvelin gene mutations in 1q-linked juvenile hemochromatosis. Blood103(11), 4317–4321 (2004).
  • Nagayoshi Y, Nakayama M, Suzuki S et al. A Q312X mutation in the hemojuvelin gene is associated with cardiomyopathy due to juvenile haemochromatosis. Eur. J. Heart Fail.10(10), 1001–1006 (2008).
  • Brakensiek K, Fegbeutel C, Malzer M, Struber M, Kreipe H, Stuhrmann M. Juvenile hemochromatosis due to homozygosity for the G320V mutation in the HJV gene with fatal outcome. Clin. Genet.76(5), 493–495 (2009).
  • Murugan RC, Lee PL, Kalavar MR, Barton JC. Early age-of-onset iron overload and homozygosity for the novel hemojuvelin mutation HJV R54X (exon 3; c.160A-->T) in an African–American male of West Indies descent. Clin. Genet.74(1), 88–92 (2008).
  • Janosi A, Andrikovics H, Vas K et al. Homozygosity for a novel nonsense mutation (G66X) of the HJV gene causes severe juvenile hemochromatosis with fatal cardiomyopathy. Blood105(1), 432 (2005).
  • Koyama C, Hayashi H, Wakusawa S et al. Three patients with middle-age-onset hemochromatosis caused by novel mutations in the hemojuvelin gene. J. Hepatol.43(4), 740–742 (2005).
  • Filali M, Le Jeunne C, Durand E et al. Juvenile hemochromatosis HJV-related revealed by cardiogenic shock. Blood Cells Mol. Dis.33(2), 120–124 (2004).
  • Aguilar-Martinez P, Lok CY, Cunat S, Cadet E, Robson K, Rochette J. Juvenile hemochromatosis caused by a novel combination of hemojuvelin G320V/R176C mutations in a 5-year old girl. Haematologica92(3), 421–422 (2007).
  • Daraio F, Ryan E, Gleeson F, Roetto A, Crowe J, Camaschella C. Juvenile hemochromatosis due to G320V/Q116X compound heterozygosity of hemojuvelin in an Irish patient. Blood Cells Mol. Dis.35(2), 174–176 (2005).
  • Island ML, Jouanolle AM, Mosser A et al. A new mutation in the hepcidin promoter impairs its BMP response and contributes to a severe phenotype in HFE related hemochromatosis. Haematologica94(5), 720–724 (2009).
  • Charbonnier F, Raux G, Wang Q et al. Detection of exon deletions and duplications of the mismatch repair genes in hereditary nonpolyposis colorectal cancer families using multiplex polymerase chain reaction of short fluorescent fragments. Cancer Res.60(11), 2760–2763 (2000).
  • Dehainault C, Lauge A, Caux-Moncoutier V et al. Multiplex PCR/liquid chromatography assay for detection of gene rearrangements: application to RB1 gene. Nucleic Acids Res.32(18), e139 (2004).
  • Wallace DF, Summerville L, Subramaniam VN. Targeted disruption of the hepatic transferrin receptor 2 gene in mice leads to iron overload. Gastroenterology132(1), 301–310 (2007).
  • Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C. Hepcidin is decreased in TFR2 hemochromatosis. Blood105(4), 1803–1806 (2005).
  • Kawabata H, Fleming RE, Gui D et al. Expression of hepcidin is down-regulated in TFR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood105(1), 376–381 (2005).
  • Camaschella C, Roetto A, Cali A et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat. Genet.25(1), 14–15 (2000).
  • Le Gac G, Mons F, Jacolot S, Scotet V, Ferec C, Frebourg T. Early onset hereditary hemochromatosis resulting from a novel TFR2 gene nonsense mutation (R105X) in two siblings of north French descent. Br. J. Haematol.125(5), 674–678 (2004).
  • Roetto A, Totaro A, Piperno A et al. New mutations inactivating transferrin receptor 2 in hemochromatosis type 3. Blood97(9), 2555–2560 (2001).
  • Girelli D, Bozzini C, Roetto A et al. Clinical and pathologic findings in hemochromatosis type 3 due to a novel mutation in transferrin receptor 2 gene. Gastroenterology122(5), 1295–1302 (2002).
  • Hattori A, Wakusawa S, Hayashi H et al. AVAQ 594–597 deletion of the TFR2 gene in a Japanese family with hemochromatosis. Hepatol. Res.26(2), 154–156 (2003).
  • Mattman A, Huntsman D, Lockitch G et al. Transferrin receptor 2 (TfR2) and HFE mutational analysis in non-C282Y iron overload: identification of a novel TfR2 mutation. Blood100(3), 1075–1077 (2002).
  • Koyama C, Wakusawa S, Hayashi H et al. Two novel mutations, L490R and V561X, of the transferrin receptor 2 gene in Japanese patients with hemochromatosis. Haematologica90(3), 302–307 (2005).
  • Biasiotto G, Camaschella C, Forni GL, Polotti A, Zecchina G, Arosio P. New TFR2 mutations in young Italian patients with hemochromatosis. Haematologica93(2), 309–310 (2008).
  • Hsiao PJ, Tsai KB, Shin SJ et al. A novel mutation of transferrin receptor 2 in a Taiwanese woman with type 3 hemochromatosis. J. Hepatol.47(2), 303–306 (2007).
  • Pelucchi S, Mariani R, Trombini P et al. Expression of hepcidin and other iron-related genes in type 3 hemochromatosis due to a novel mutation in transferrin receptor-2. Haematologica94(2), 276–279 (2009).
  • Lee PL, Barton JC. Hemochromatosis and severe iron overload associated with compound heterozygosity for TFR2 R455Q and two novel mutations TFR2 R396X and G792R. Acta. Haematol.115(1–2), 102–105 (2006).
  • Donovan A, Lima CA, Pinkus JL et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab.1(3), 191–200 (2005).
  • Nemeth E, Tuttle MS, Powelson J et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science306(5704), 2090–2093 (2004).
  • Pietrangelo A. The ferroportin disease. Blood Cells Mol. Dis.32, 131–138 (2004).
  • De Domenico I, Ward DM, Nemeth E et al. The molecular basis of ferroportin-linked hemochromatosis. Proc. Natl Acad. Sci. USA102(25), 8955–8960 (2005).
  • Montosi G, Donovan A, Totaro A et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J. Clin. Invest.108(4), 619–623 (2001).
  • Njajou OT, Vaessen N, Joosse M et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat. Genet.28(3), 213–214 (2001).
  • Sham RL, Phatak PD, Nemeth E, Ganz T. Hereditary hemochromatosis due to resistance to hepcidin: high hepcidin concentrations in a family with C326S ferroportin mutation. Blood114(2), 493–494 (2009).
  • Sham RL, Phatak PD, West C, Lee P, Andrews C, Beutler E. Autosomal dominant hereditary hemochromatosis associated with a novel ferroportin mutation and unique clinical features. Blood Cells Mol. Dis.34(2), 157–161 (2005).
  • Drakesmith H, Schimanski LM, Ormerod E et al. Resistance to hepcidin is conferred by hemochromatosis-associated mutations of ferroportin. Blood106, 1092–1097 (2005).
  • Wallace DF, Harris JM, Subramaniam VN. Functional analysis and theoretical modeling of ferroportin reveals clustering of mutations according to phenotype. Am. J. Physiol. Cell Physiol.298(1), C75–C84 (2010).
  • Fernandes A, Preza GC, Phung Y et al. The molecular basis of hepcidin-resistant hereditary hemochromatosis. Blood114(2), 437–443 (2009).
  • De Domenico I, Ward DM, di Patti MC et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J.26(12), 2823–2831 (2007).
  • Miyajima H, Takahashi Y, Kono S. Aceruloplasminemia, an inherited disorder of iron metabolism. Biometals16(1), 205–213 (2003).
  • Loreal O, Turlin B, Pigeon C et al. Aceruloplasminemia: new clinical, pathophysiological and therapeutic insights. J. Hepatol.36(6), 851–856 (2002).
  • Fasano A, Colosimo C, Miyajima H, Tonali PA, Re TJ, Bentivoglio AR. Aceruloplasminemia: a novel mutation in a family with marked phenotypic variability. Mov. Disord.23(5), 751–755 (2008).
  • Yazaki M, Yoshida K, Nakamura A et al. A novel splicing mutation in the ceruloplasmin gene responsible for hereditary ceruloplasmin deficiency with hemosiderosis. J. Neurol. Sci.156(1), 30–34 (1998).
  • McNeill A, Pandolfo M, Kuhn J, Shang H, Miyajima H. The neurological presentation of ceruloplasmin gene mutations. Eur. Neurol.60(4), 200–205 (2008).
  • Knisely AS, Gelbart T, Beutler E. Molecular characterization of a third case of human atransferrinemia. Blood104(8), 2607 (2004).
  • Iolascon A, Camaschella C, Pospisilova D, Piscopo C, Tchernia G, Beaumont C. Natural history of recessive inheritance of DMT1 mutations. J. Pediatr.152(1), 136–139 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.