265
Views
20
CrossRef citations to date
0
Altmetric
Theme: Genetic & Genomics Applications - Review

Multicolor FISH methods in current clinical diagnostics

, , , , , , , & show all
Pages 251-255 | Published online: 09 Jan 2014

References

  • Lewis R. Human Genetics. Mcgraw-Hill Higher Education, NY, USA (2011).
  • Desai AN, Jere A. Next-generation sequencing: ready for the clinics? Clin. Genet. 81(6), 503–510 (2012).
  • Ahn JW, Mann K, Walsh S et al. Validation and implementation of array comparative genomic hybridisation as a first line test in place of postnatal karyotyping for genome imbalance. Mol. Cytogenet. 3, 9 (2010).
  • Gao J, Liu C, Yao F et al. Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion. Mol. Cytogenet. 5(1), 33 (2012).
  • Kumar RA, Sudi J, Babatz TD et al. A de novo 1p34.2 microdeletion identifies the synaptic vesicle gene RIMS3 as a novel candidate for autism. J. Med. Genet. 47(2), 81–90 (2010).
  • Chen CP, Huang HK, Su YN et al. Trisomy 7 mosaicism at amniocentesis: interphase FISH, QF-PCR, and aCGH analyses on uncultured amniocytes for rapid distinguishing of true mosaicism from pseudomosaicism. Taiwan J. Obstet. Gynecol. 51(1), 77–82 (2012).
  • Claussen U, Michel S, Mühlig P et al. Demystifying chromosome preparation and the implications for the concept of chromosome condensation during mitosis. Cytogenet. Genome Res. 98(2–3), 136–146 (2002).
  • Chang SS, Mark HF. Emerging molecular cytogenetic technologies. Cytobios 90(360), 7–22 (1997).
  • Liehr T, Starke H, Weise A, Lehrer H, Claussen U. Multicolor FISH probe sets and their applications. Histol. Histopathol. 19(1), 229–237 (2004).
  • Nederlof PM, Robinson D, Abuknesha R et al. Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry 10(1), 20–27 (1989).
  • Speicher MR, Gwyn Ballard S, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12(4), 368–375 (1996).
  • Schröck E, du Manoir S, Veldman T et al. Multicolor spectral karyotyping of human chromosomes. Science 273(5274), 494–497 (1996).
  • Liehr T, Heller A, Starke H, Claussen U. FISH banding methods: applications in research and diagnostics. Expert Rev. Mol. Diagn. 2(3), 217–225 (2002).
  • Chudoba I, Plesch A, Lörch T, Lemke J, Claussen U, Senger G. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet. Cell Genet. 84(3–4), 156–160 (1999).
  • Weise A, Heller A, Starke H et al. Multitude multicolor chromosome banding (mMCB) – a comprehensive one-step multicolor FISH banding method. Cytogenet. Genome Res. 103(1–2), 34–39 (2003).
  • Weise A, Mrasek K, Fickelscher I et al. Molecular definition of high-resolution multicolor banding probes: first within the human DNA sequence anchored FISH banding probe set. J. Histochem. Cytochem. 56(5), 487–493 (2008).
  • Müller S, Wienberg J. Advances in the development of chromosome bar codes: integration of M-FISH and Rx-FISH technology. Medgen. 12(4), 474–477 (2000).
  • Kakazu N, Abe T. Multicolor banding technique, spectral color banding (SCAN): new development and applications. Cytogenet. Genome Res. 114(3–4), 250–256 (2006).
  • Aurich-Costa J, Vannier A, Grégoire E, Nowak F, Cherif D. IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: application to the analysis of seven human prostate cell lines. Genes. Chromosomes Cancer 30(2), 143–160 (2001).
  • Starke H, Schreyer I, Kähler C et al. Molecular cytogenetic characterization of a prenatally detected supernumerary minute marker chromosome 8. Prenat. Diagn. 19(12), 1169–1174 (1999).
  • Nietzel A, Rocchi M, Starke H et al. A new multicolor-FISH approach for the characterization of marker chromosomes: centromere-specific multicolor-FISH (cenM-FISH). Hum. Genet. 108(3), 199–204 (2001).
  • Liehr T, Ewers E, Kosyakova N et al. Handling small supernumerary marker chromosomes in prenatal diagnostics. Expert Rev. Mol. Diagn. 9(4), 317–324 (2009).
  • Weise A, Gross M, Hinreiner S, Witthuhn V, Mkrtchyan H, Liehr T. POD-FISH: a new technique for parental origin determination based on copy number variation polymorphism. Methods Mol. Biol. 659, 291–298 (2010).
  • Liehr T, Starke H, Heller A et al. Multicolor fluorescence in situ hybridization (FISH) applied to FISH-banding. Cytogenet. Genome Res. 114(3-4), 240–244 (2006).
  • Bucksch M, Ziegler M, Kosayakova N et al. A new multicolor fluorescence in situ hybridization probe set directed against human heterochromatin: HCM-FISH. J. Histochem. Cytochem. 60(7), 530–536 (2012).
  • Starke H, Seidel J, Henn W et al. Homologous sequences at human chromosome 9 bands p12 and q13-21.1 are involved in different patterns of pericentric rearrangements. Eur. J. Hum. Genet. 10(12), 790–800 (2002).
  • Weise A, Liehr T. Fluorescence in situ hybridization for prenatal screening of chromosomal aneuploidies. Expert Rev. Mol. Diagn. 8(4), 355–357 (2008).
  • Weise A, Mrasek K, Klein E et al. Microdeletion and microduplication syndromes. J. Histochem. Cytochem. 55(3), 185–190 (2012).
  • Ligon AH, Beaudet AL, Shaffer LG. Simultaneous, multilocus FISH analysis for detection of microdeletions in the diagnostic evaluation of developmental delay and mental retardation. Am. J. Hum. Genet. 61(1), 51–59 (1997).
  • Sauter SM, Böhm D, Bartels I et al. Partial trisomy of distal 19q detected by quantitative real-time PCR and FISH in a girl with mild facial dysmorphism, hypotonia and developmental delay. Am. J. Med. Genet. 143A(10), 1091–1099 (2007).
  • Liehr T, Karamysheva T, Merkas M et al. Somatic mosaicism in cases with small supernumerary marker chromosomes. Curr. Genomics 11(6), 432–439 (2010).
  • Pellestor F, Anahory T, Lefort G et al. Complex chromosomal rearrangements: origin and meiotic behavior. Hum. Reprod. Update 17(4), 476–494 (2011).
  • Trifonov V, Seidel J, Starke H et al. Enlarged chromosome 13 p-arm hiding a cryptic partial trisomy 6p22.2-pter. Prenat. Diagn. 23(5), 427–430 (2003).
  • Hamid AB, Kreskowski K, Weise A et al. How to narrow down chromosomal breakpoints in small and large derivative chromosomes – a new probe set. J. Appl. Genet. 53(3), 259–269 (2012).
  • Liehr T, Starke H, Senger G, Melotte C, Weise A, Vermeesch JR. Overrepresentation of small supernumerary marker chromosomes (sSMC) from chromosome 6 origin in cases with multiple sSMC. Am. J. Med. Genet. A 140(1), 46–51 (2006).
  • Carreira IM, Melo JB, Rodrigues C et al. Molecular cytogenetic characterisation of a mosaic add(12)(p13.3) with an inv dup(3)(q26.31 → qter) detected in an autistic boy. Mol. Cytogenet. 2, 16 (2009).
  • Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 1(6), 648–655 (2012).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.