150
Views
14
CrossRef citations to date
0
Altmetric
Special Report

The clinical utility of molecular karyotyping using high-resolution array-comparative genomic hybridization

, , , &
Pages 449-457 | Published online: 09 Jan 2014

References

  • Shaffer LG. American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation. Genet. Med. 7(9), 650–654 (2005).
  • Schouten JP, Mcelgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30(12), e57 (2002).
  • Rauch A, Hoyer J, Guth S et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am. J. Med. Genet. A 140(19), 2063–2074 (2006).
  • Koolen DA, Pfundt R, De Leeuw N et al. Genomic microarrays in mental retardation: a practical workflow for diagnostic applications. Hum. Mutat. 30(3), 283–292 (2009).
  • Aradhya S, Cherry AM. Array-based comparative genomic hybridization: clinical contexts for targeted and whole-genome designs. Genet. Med. 9(9), 553–559 (2007).
  • Baldwin EL, Lee JY, Blake DM et al. Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray. Genet. Med. 10(6), 415–429 (2008).
  • Wang J, Rakhade M. Utility of array CGH in molecular diagnosis of mitochondrial disorders. Methods Mol. Biol. 837, 301–312 (2012).
  • Keren B, Le Caignec C. Oligonucleotide microarrays in constitutional genetic diagnosis. Expert Rev. Mol. Diagn. 11(5), 521–532 (2011).
  • Iafrate AJ, Feuk L, Rivera MN et al. Detection of large-scale variation in the human genome. Nat. Genet. 36(9), 949–951 (2004).
  • Redon R, Ishikawa S, Fitch KR et al. Global variation in copy number in the human genome. Nature 444(7118), 444–454 (2006).
  • Vermeesch JR, Fiegler H, De Leeuw N et al. Guidelines for molecular karyotyping in constitutional genetic diagnosis. Eur. J. Hum. Genet. 15(11), 1105–1114 (2007).
  • Miller DT, Adam MP, Aradhya S et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86(5), 749–764 (2010).
  • Kaminsky EB, Kaul V, Paschall J et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 13(9), 777–784 (2011).
  • Cooper GM, Coe BP, Girirajan S et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43(9), 838–846 (2011).
  • Kitsiou-Tzeli S, Tzetis M, Sofocleous C et al. De novo interstitial duplication of the 15q11.2-q14 PWS/AS region of maternal origin: clinical description, array CGH analysis, and review of the literature. Am. J. Med. Genet. A 152A(8), 1925–1932 (2010).
  • Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 13(7), 680–685 (2011).
  • Riggs ER, Church DM, Hanson K et al. Towards an evidence-based process for the clinical interpretation of copy number variation. Clin. Genet. 81(5), 403–412 (2011).
  • Xiang B, Zhu H, Shen Y et al. Genome-wide oligonucleotide array comparative genomic hybridization for etiological diagnosis of mental retardation: a multicenter experience of 1499 clinical cases. J. Mol. Diagn. 12(2), 204–212 (2010).
  • Lee C, Scherer SW. The clinical context of copy number variation in the human genome. Expert Rev. Mol. Med. 12, E8 (2010).
  • Brothman AR, Dolan MM, Goodman BK et al. College of American Pathologists/American College of Medical Genetics proficiency testing for constitutional cytogenomic microarray analysis. Genet. Med. 13(9), 765–769 (2011).
  • Callier P, Faivre L, Thauvin-Robinet C et al. Array-CGH in a series of 30 patients with mental retardation, dysmorphic features, and congenital malformations detected an interstitial 1p22.2-p31.1 deletion in a patient with features overlapping the Goldenhar syndrome. Am. J. Med. Genet. A 146A(16), 2109–2115 (2008).
  • Maegawa GH, Poplawski NK, Andresen BS et al. Interstitial deletion of 1p22.2p31.1 and medium-chain acyl-CoA dehydrogenase deficiency in a patient with global developmental delay. Am. J. Med. Genet. A 146A(12), 1581–1586 (2008).
  • Flandin P, Zhao Y, Vogt D et al. Lhx6 and Lhx8 coordinately induce neuronal expression of Shh that controls the generation of interneuron progenitors. Neuron 70(5), 939–950 (2011).
  • Caliebe A, Kroes HY, Van Der Smagt JJ et al. Four patients with speech delay, seizures and variable corpus callosum thickness sharing a 0.440 Mb deletion in region 1q44 containing the HNRPU gene. Eur. J. Med. Genet. 53(4), 179–185 (2010).
  • Bena F, Bottani A, Marcelli F, Sizonenko LD, Conrad B, Dahoun S. A de novo 1.1–1.6 Mb subtelomeric deletion of chromosome 20q13.33 in a patient with learning difficulties but without obvious dysmorphic features. Am. J. Med. Genet. A 143A(16), 1894–1899 (2007).
  • Xu LM, Li JR, Huang Y, Zhao M, Tang X, Wei L. AutismKB: an evidence-based knowledgebase of autism genetics. Nucleic Acids Res. 40(Database issue), D1016–D1022 (2012).
  • Ghahramani Seno MM, Hu P, Gwadry FG et al. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 1380, 85–97 (2011).
  • Pinto D, Pagnamenta AT, Klei L et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466(7304), 368–372 (2010).
  • Glessner JT, Wang K, Cai G et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459(7246), 569–573 (2009).
  • Rujescu D, Ingason A, Cichon S et al. Disruption of the neurexin 1 gene is associated with schizophrenia. Hum. Mol. Genet. 18(5), 988–996 (2009).
  • Ching MS, Shen Y, Tan WH et al. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 153B(4), 937–947 (2010).
  • Kim HG, Kishikawa S, Higgins AW et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am. J. Hum. Genet. 82(1), 199–207 (2008).
  • Bayou N, Belhadj A, Daoud H et al. Exploring the 7p22.1 chromosome as a candidate region for autism. J. Biomed. Biotechnol. 2010, 423894 (2010).
  • Willemsen MH, Fernandez BA, Bacino CA et al. Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24.3 microdeletion syndrome. Eur. J. Hum. Genet. 18(4), 429–435 (2010).
  • Li F, Shen Y, Kohler U et al. Interstitial microduplication of Xp22.31: causative of intellectual disability or benign copy number variant? Eur. J. Med. Genet. 53(2), 93–99 (2010).
  • Van Emburgh BO, Robertson KD. Modulation of DNMT3b function in vitro by interactions with DNMT3L, DNMT3a and DNMT3b splice variants. Nucleic Acids Res. 39(12), 4984–5002 (2011).
  • Koolen DA, Sharp AJ, Hurst JA et al. Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. J. Med. Genet. 45(11), 710–720 (2008).
  • Kirchhoff M, Bisgaard AM, Duno M, Hansen FJ, Schwartz M. A 17q21.31 microduplication, reciprocal to the newly described 17q21.31 microdeletion, in a girl with severe psychomotor developmental delay and dysmorphic craniofacial features. Eur. J. Med. Genet. 50(4), 256–263 (2007).
  • Buiting K, Nazlican H, Galetzka D, Wawrzik M, Gross S, Horsthemke B. C15orf2 and a novel noncoding transcript from the Prader-Willi/Angelman syndrome region show monoallelic expression in fetal brain. Genomics 89(5), 588–595 (2007).
  • Duker AL, Ballif BC, Bawle EV et al. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur. J. Hum. Genet. 18(11), 1196–1201 (2010).
  • Chen Y, Liu YJ, Pei YF et al. Copy number variations at the Prader-Willi syndrome region on chromosome 15 and associations with obesity in whites. Obesity (Silver Spring) 19(6), 1229–1234 (2011).
  • Agha MM, Williams JI, Marrett L, To T, Zipursky A, Dodds L. Congenital abnormalities and childhood cancer. Cancer 103(9), 1939–1948 (2005).
  • Gijsbers AC, Lew JY, Bosch CA et al. A new diagnostic workflow for patients with mental retardation and/or multiple congenital abnormalities: test arrays first. Eur. J. Hum. Genet. 17(11), 1394–1402 (2009).
  • Pinto D, Darvishi K, Shi X et al. Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat. Biotechnol. 29(6), 512–520 (2011).
  • Rickman L, Fiegler H, Shaw-Smith C et al. Prenatal detection of unbalanced chromosomal rearrangements by array CGH. J. Med. Genet. 43(4), 353–361 (2006).
  • Stankiewicz P, Beaudet AL. Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr. Opin. Genet. Dev. 17(3), 182–192 (2007).
  • Srebniak M, Boter M, Oudesluijs G et al. Application of SNP array for rapid prenatal diagnosis: implementation, genetic counseling and diagnostic flow. Eur. J. Hum. Genet. 19(12), 1230–1237 (2011).
  • Fernandez-Martinez FJ, Galindo A, Garcia-Burguillo A et al. Noninvasive fetal sex determination in maternal plasma: a prospective feasibility study. Genet. Med. 14(1), 101–106 (2012).
  • Bi W, Breman A, Shaw CA et al. Detection of >/=1Mb microdeletions and microduplications in a single cell using custom oligonucleotide arrays. Prenat. Diagn. 32(1), 10–20 (2012).
  • Tiu RV, Gondek LP, O’keefe CL et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 117(17), 4552–4560 (2011).
  • Heinrichs S, Li C, Look AT. SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood 115(21), 4157–4161 (2010).
  • Le Scouarnec S, Gribble SM. Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity (Edinb.) 108(1), 75–85 (2012).
  • Talkowski ME, Ernst C, Heilbut A et al. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am. J. Hum. Genet. 88(4), 469–481 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.