5,193
Views
116
CrossRef citations to date
0
Altmetric
Theme: Epigenomic applications - Review

DNA methylation biomarkers in cancer: progress towards clinical implementation

, , &
Pages 473-487 | Published online: 09 Jan 2014

References

  • Schuebel KE, Chen W, Cope L et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet.3, 1709–1723 (2007).
  • Ushijima T, Asada K. Aberrant DNA methylation in contrast with mutations. Cancer Sci.101, 300–305 (2010).
  • Taby R, Issa JP. Cancer epigenetics. CA Cancer J. Clin.60, 376–392 (2010).
  • McKenna ES, Sansam CG, Cho YJ et al. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol. Cell. Biol.28, 6223–6233 (2008).
  • Zhang J, Benavente CA, McEvoy J et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature481, 329–334 (2012).
  • Bird AP. CpG-rich islands and the function of DNA methylation. Nature321, 209–213 (1986).
  • Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349, 2042–2054 (2003).
  • Jones PA. The DNA methylation paradox. Trends Genet.15, 34–37 (1999).
  • Shenker N, Flanagan JM. Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research. Br. J. Cancer106, 248–253 (2012).
  • Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics1, 239–259 (2009).
  • Rauch TA, Zhong X, Wu X et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc. Natl Acad. Sci. USA105, 252–257 (2008).
  • Kanai Y. Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Sci.101, 36–45 (2010).
  • Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv. Genet.70, 277–308 (2010).
  • Ohm JE, McGarvey KM, Yu X et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat. Genet.39, 237–242 (2007).
  • Widschwendter M, Fiegl H, Egle D et al. Epigenetic stem cell signature in cancer. Nat. Genet.39, 157–158 (2007).
  • Kristensen LS, Hansen LL. PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin. Chem.55, 1471–1483 (2009).
  • Reddy AN, Jiang WW, Kim M et al. Death-associated protein kinase promoter hypermethylation in normal human lymphocytes. Cancer Res.63, 7694–7698 (2003).
  • Candiloro IL, Dobrovic A. Detection of MGMT promoter methylation in normal individuals is strongly associated with the T allele of the rs16906252 MGMT promoter single nucleotide polymorphism. Cancer Prev. Res.2, 862–867 (2009).
  • Issa JP. Epigenetic variation and human disease. J. Nutr.132, 2388S–2392S (2002).
  • Deng G, Chen A, Hong J, Chae HS, Kim YS. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res.59, 2029–2033 (1999).
  • Levenson VV. DNA methylation as a universal biomarker. Expert Rev. Mol. Diagn.10(4), 481–488 (2010).
  • Sepulveda AR, Jones D, Ogino S et al. CpG methylation analysis – current status of clinical assays and potential applications in molecular diagnostics: a report of the association for molecular pathology. J. Mol. Diagn.11, 266–278 (2009).
  • Frommer M, McDonald LE, Millar DS et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA89, 1827–1831 (1992).
  • Rand K, Qu W, Ho T, Clark SJ, Molloy P. Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives. Methods27, 114–120 (2002).
  • Kristensen LS, Mikeska T, Krypuy M, Dobrovic A. Sensitive melting analysis after real time-methylation specific PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection. Nucl. Acids Res.36, E42 (2008).
  • Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucl. Acids Res.29, E65 (2001).
  • Warnecke PM, Stirzaker C, Melki JR et al. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucl. Acids Res.25, 4422–4426 (1997).
  • Wojdacz TK, Hansen LL. Reversal of PCR bias for improved sensitivity of the DNA methylation melting curve assay. Biotechniques41, 274–278 (2006).
  • Shen L, Guo Y, Chen X, Ahmed S, Issa JP. Optimizing annealing temperature overcomes bias in bisulfite PCR methylation analysis. Biotechniques42, 48–58 (2007).
  • Mikeska T, Candiloro IL, Dobrovic A. The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics2, 561–573 (2010).
  • Candiloro ILM, Mikeska T, Dobrovic A. Assessing combined methylation-sensitive high resolution melting and pyrosequencing for the analysis of heterogeneous DNA methylation. Epigenetics6, 500–507 (2011).
  • Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol.161, 1961–1971 (2002).
  • Mikeska T, Felsberg J, Hewitt CA, Dobrovic A. Analysing DNA methylation using bisulphite pyrosequencing. Methods Mol. Biol.791, 33–53 (2011).
  • Dejeux E, Audard V, Cavard C et al. Rapid identification of promoter hypermethylation in hepatocellular carcinoma by pyrosequencing of etiologically homogeneous sample pools. J. Mol. Diagn.9, 510–520 (2007).
  • Lillycrop KA, Phillips ES, Torrens C et al. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR α promoter of the offspring. Br. J. Nutr.100, 278–282 (2008).
  • Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucl. Acids Res.35, E41 (2007).
  • Mikeska T, Dobrovic A. Methylation-sensitive high resolution melting for the rapid analysis of DNA methylation. In: Epigenetics: A Reference Manual. Craig JM, Wong NC (Eds). Caister Academic Press, Norwich, UK, 325–335 (2011).
  • Wojdacz TK. Methylation-sensitive high-resolution melting in the context of legislative requirements for validation of analytical procedures for diagnostic applications. Expert Rev. Mol. Diagn.12(1), 39–47 (2012).
  • Ehrich M, Nelson MR, Stanssens P et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA102, 15785–15790 (2005).
  • Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucl. Acids Res.35, E119 (2007).
  • Dedeurwaerder S, Defrance M, Calonne E et al. Evaluation of the Infinium Methylation 450K technology. Epigenomics3, 771–784 (2011).
  • Thirlwell C, Eymard M, Feber A et al. Genome-wide DNA methylation analysis of archival formalin-fixed paraffin-embedded tissue using the illumina Infinium HumanMethylation27 Bead Chip. Methods52, 248–254 (2010).
  • Jasmine F, Rahaman R, Roy S et al. Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed, paraffin-embedded paired tumor and normal tissue. BMC Res. Notes5, 117 (2012).
  • Taylor KH, Kramer RS, Davis JW et al. Ultra deep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res.67, 8511–8518 (2007).
  • Korshunova Y, Maloney RK, Lakey N et al. Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res.18, 19–29 (2008).
  • Suijkerbuijk KPM, van Diest PJ, van der Wall E. Improving early breast cancer detection: focus on methylation. Ann. Oncol.22, 24–29 (2011).
  • Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA93, 9821–9826 (1996).
  • Preusser M, Elezi L, Hainfellner JA. Reliability and reproducibility of PCR-based testing of O6-methylguanine-DNA methyltransferase gene (MGMT) promoter methylation status in formalin-fixed and paraffin-embedded neurosurgical biopsy specimens. Clin. Neuropathol.27, 388–390 (2008).
  • Hamilton MG, Roldan G, Magliocco A et al. Determination of the methylation status of MGMT in different regions within glioblastoma multiforme. J. Neurooncol.102, 255–260 (2011).
  • Hegi ME, Diserens AC, Gorlia T et al.MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med.352, 997–1003 (2005).
  • Eads CA, Danenberg KD, Kawakami K et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucl. Acids Res.28, E32 (2000).
  • Chhibber A, Schroeder BG. Single-molecule polymerase chain reaction reduces bias: application to DNA methylation analysis by bisulfite sequencing. Anal. Biochem.377, 46–54 (2008).
  • Candiloro IL, Mikeska T, Hokland P, Dobrovic A. Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene. Epigenetics Chromatin1, 7 (2008).
  • Li M, Chen WD, Papadopoulos N et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol.27(9), 858–863 (2009).
  • Clarke J, Wu HC, Jayasinghe L et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol.4, 265–270 (2009).
  • Flusberg BA, Webster DR, Lee JH et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods7, 461–465 (2010).
  • Bock C, Lengauer T. Computational epigenetics. Bioinformatics24, 1–10 (2008).
  • Bock C. Epigenetic biomarker development. Epigenomics1, 99–110 (2009).
  • Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics18, 1427–1431 (2002).
  • Tusnády GE, Simon I, Váradi A, Arányi T. BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucl. Acids Res.33, E9 (2005).
  • Schuffler P, Mikeska T, Waha A, Lengauer T, Bock C. MethMarker: user-friendly design and optimization of gene-specific DNA methylation assays. Genome Biol.10, R105 (2009).
  • Bock C, Reither S, Mikeska T et al. BiQ analyzer: visualization and quality control for DNA methylation data from bisulphite sequencing. Bioinformatics21, 4067–4068 (2005).
  • Kumaki Y, Oda M, Okano M. QUMA: quantification tool for methylation analysis. Nucl. Acids Res.36, W170–W175 (2008).
  • Lutsik P, Feuerbach L, Arand J et al. BiQ analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing. Nucl. Acids Res.39, W551–W556 (2011).
  • Thompson RF, Suzuki M, Lau KW, Greally JM. A pipeline for the quantitative analysis of CG dinucleotide methylation using mass spectrometry. Bioinformatics25, 2164–2170 (2009).
  • Yang CH, Chuang LY, Cheng YH et al. Methyl-typing: an improved and visualized COBRA software for epigenomic studies. FEBS Lett.584, 739–744 (2010).
  • Dobrovic A, Kristensen LS. DNA methylation, epimutations and cancer predisposition. Int. J. Biochem. Cell Biol.41, 34–39 (2009).
  • Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD. A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res.62, 3925–3928 (2002).
  • Snell C, Krypuy M, Wong EM et al.BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. Breast Cancer Res.10, R12 (2008).
  • Wong EM, Southey MC, Fox SB et al. Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev. Res.4, 23–33 (2011).
  • deVos T, Tetzner R, Model F et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem.55, 1337–1346 (2009).
  • Tanzer M, Balluff B, Distler J et al. Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS One5, E9061 (2010).
  • Warren JD, Xiong W, Bunker AM et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. Genet.9, 133 (2011).
  • Chen WD, Han ZJ, Skoletsky J et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J. Natl Cancer Inst.97, 1124–1132 (2005).
  • Itzkowitz S, Brand R, Jandorf L et al. A simplified, noninvasive stool DNA test for colorectal cancer detection. Am. J. Gastroenterol.103, 2862–2870 (2008).
  • Zou H, Allawi H, Cao X et al. Quantification of methylated markers with a multiplex methylation-specific technology. Clin. Chem.58(2), 375–383 (2011).
  • Merlo A, Herman JG, Mao L et al. 5´ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med.1, 686–692 (1995).
  • Tessema M, Yu YY, Stidley CA et al. Concomitant promoter methylation of multiple genes in lung adenocarcinomas from current, former and never smokers. Carcinogenesis30, 1132–1138 (2009).
  • Zhang B, Zhu W, Yang P et al. Cigarette smoking and p16 gene promoter hypermethylation in non-small cell lung carcinoma patients: a meta-analysis. PLoS One6, E28882 (2011).
  • Palmisano WA, Divine KK, Saccomanno G et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res.60, 5954–5958 (2000).
  • Kersting M, Friedl C, Kraus A et al. Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J. Clin. Oncol.18, 3221–3229 (2000).
  • Topaloglu O, Hoque MO, Tokumaru Y et al. Detection of promoter hypermethylation of multiple genes in the tumor and bronchoalveolar lavage of patients with lung cancer. Clin. Cancer Res.10, 2284–2288 (2004).
  • Fujiwara K, Fujimoto N, Tabata M et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin. Cancer Res.11, 1219–1225 (2005).
  • Belinsky SA, Klinge DM, Dekker JD et al. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin. Cancer Res.11, 6505–6511 (2005).
  • Schmidt B, Liebenberg V, Dietrich D et al.SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer10, 600 (2010).
  • Schneider KU, Dietrich D, Fleischhacker M et al. Correlation of SHOX2 gene amplification and DNA methylation in lung cancer tumors. BMC Cancer11, 102 (2011).
  • Kneip C, Schmidt B, Seegebarth A et al.SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J. Thorac. Oncol.6, 1632–1638 (2011).
  • Nakayama M, Bennett CJ, Hicks JL et al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture. Am. J. Pathol.163, 923–933 (2003).
  • Ahmed H, Cappello F, Rodolico V, Vasta GR. Evidence of heavy methylation in the galectin 3 promoter in early stages of prostate adenocarcinoma: development and validation of a methylated marker for early diagnosis of prostate cancer. Transl. Oncol.2, 146–156 (2009).
  • Goessl C, Krause H, Muller M et al. Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res.60, 5941–5945 (2000).
  • Goessl C, Muller M, Heicappell R et al. DNA-based detection of prostate cancer in urine after prostatic massage. Urology58, 335–338 (2001).
  • Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME et al. DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res. Treat.111, 429–437 (2008).
  • Maier S, Nimmrich I, Koenig T et al. DNA-methylation of the homeodomain transcription factor PITX2 reliably predicts risk of distant disease recurrence in tamoxifen-treated, node-negative breast cancer patients – technical and clinical validation in a multi-centre setting in collaboration with the European Organisation for Research and Treatment of Cancer (EORTC) PathoBiology group. Eur. J. Cancer43, 1679–1686 (2007).
  • Harbeck N, Nimmrich I, Hartmann A et al. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients. J. Clin. Oncol.26, 5036–5042 (2008).
  • Hartmann O, Spyratos F, Harbeck N et al. DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin. Cancer Res.15, 315–323 (2009).
  • Weiss G, Cottrell S, Distler J et al. DNA methylation of the PITX2 gene promoter region is a strong independent prognostic marker of biochemical recurrence in patients with prostate cancer after radical prostatectomy. J. Urol.181, 1678–1685 (2009).
  • Banez LL, Sun L, van Leenders GJ et al. Multicenter clinical validation of PITX2 methylation as a prostate specific antigen recurrence predictor in patients with post-radical prostatectomy prostate cancer. J. Urol.184, 149–156 (2010).
  • Brock MV, Hooker CM, Ota-Machida E et al. DNA methylation markers and early recurrence in stage I lung cancer. N. Engl. J. Med.358, 1118–1128 (2008).
  • Juergens RA, Wrangle J, Vendetti FP et al. Combination epigenetic therapy has efficiacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov.1, 598–607 (2011).
  • Paige AJW, Brown R. Pharmaco(epi)genomics in ovarian cancer. Pharmacogenomics9, 1825–1834 (2008).
  • Brandes JC, Carraway H, Herman JG. Optimal primer design using the novel primer design program: MSPprimer provides accurate methylation analysis of the ATM promoter. Oncogene26, 6229–6237 (2007).
  • Esteller M, Garcia-Foncillas J, Andion E et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med.343, 1350–1354 (2000).
  • Esteller M, Gaidano G, Goodman SN et al. Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J. Natl Cancer Inst.94, 26–32 (2002).
  • Bei R, Marzocchella L, Turriziani M. The use of temozolomide for the treatment of malignant tumors: clinical evidence and molecular mechanisms of action. Recent Pat. Anticancer Drug Discov.5, 172–187 (2010).
  • Mikeska T, Bock C, El-Maarri O et al. Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction analysis. J. Mol. Diagn.9, 368–381 (2007).
  • Vlassenbroeck I, Califice S, Diserens AC et al. Validation of real-time methylation-specific PCR to determine O6-methylguanine-DNA methyltransferase gene promoter methylation in glioma. J. Mol. Diagn.10, 332–337 (2008).
  • Vassella E, Vajtai I, Bandi N et al. Primer extension based quantitative polymerase chain reaction reveals consistent differences in the methylation status of the MGMT promoter in diffusely infiltrating gliomas (WHO grade II–IV) of adults. J. Neurooncol.104, 293–303 (2011).
  • Toyota M, Suzuki H, Yamashita T et al. Cancer epigenomics: implications of DNA methylation in personalized cancer therapy. Cancer Sci.100, 787–791 (2009).
  • Agrelo R, Cheng WH, Setien F et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc. Natl Acad. Sci. USA103, 8822–8827 (2006).
  • Gagnon JF, Bernard O, Villeneuve L, Tetu B, Guillemette C. Irinotecan inactivation is modulated by epigenetic silencing of UGT1A1 in colon cancer. Clin. Cancer Res.12, 1850–1858 (2006).
  • Farmer H, McCabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005).
  • Veeck J, Ropero S, Setien F et al.BRCA1 CpG island hypermethylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors. J. Clin. Oncol.28, E563–E564 (2010).
  • Taniguchi T, Tischkowitz M, Ameziane N et al. Disruption of the Fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors. Nat. Med.9, 568–574 (2003).
  • The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature474, 609–615 (2011).
  • Satoh A, Toyota M, Itoh F et al. Epigenetic inactivation of CHFR and sensitivity to microtubule inhibitors in gastric cancer. Cancer Res.63, 8606–8613 (2003).
  • Koga Y, Kitajima Y, Miyoshi A et al. The significance of aberrant CHFR methylation for clinical response to microtubule inhibitors in gastric cancer. J. Gastroenterol.41, 133–139 (2006).
  • Banno K, Yanokura M, Kawaguchi M et al. Epigenetic inactivation of the CHFR gene in cervical cancer contributes to sensitivity to taxanes. Int. J. Oncol.31, 713–720 (2007).
  • Wang X, Yang Y, Xu C et al.CHFR suppression by hypermethylation sensitizes endometrial cancer cells to paclitaxel. Int. J. Gynecol. Cancer21, 996–1003 (2011).
  • Ogi K, Toyota M, Mita H et al. Small interfering RNA-induced CHFR silencing sensitizes oral squamous cell cancer cells to microtubule inhibitors. Cancer Biol. Ther.4, 773–780 (2005).
  • Yoshida K, Hamai Y, Suzuki T et al. DNA methylation of CHFR is not a predictor of the response to docetaxel and paclitaxel in advanced and recurrent gastric cancer. Anticancer Res.26, 49–54 (2006).
  • Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2´-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res.60, 6039–6044 (2000).
  • Zeller C, Dai W, Steele NL et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene doi:10.1038/onc.2011.611 (2012) (Epub ahead of print).
  • Carethers JM, Chauhan DP, Fink D et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology117, 123–131 (1999).
  • Ogawa T, Liggett TE, Melnikov AA et al. Methylation of death-associated protein kinase is associated with cetuximab and erlotinib resistance. Cell Cycle11(8), 1656–1663 (2012).
  • Shen L, Kondo Y, Ahmed S et al. Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel. Cancer Res.67, 11335–11343 (2007).
  • Ebert MPA, Tanzer M, Balluff B et al. TFAP2E–DKK4 and chemoresistance in colorectal cancer. N. Engl. J. Med.366, 44–53 (2012).
  • Issa JP, Kantarjian HM. Targeting DNA methylation. Clin. Cancer Res.15, 3938–3946 (2009).
  • Shen L, Kantarjian H, Guo Yi et al. DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J. Clin. Oncol.28, 605–613 (2010).
  • Yang AS, Doshi KD, Choi SW et al. DNA methylation changes after 5-aza-2´-deoxycytidine therapy in patients with leukemia. Cancer Res.66, 5495–5503 (2006).
  • Stresemann C, Bokelmann I, Mahlknecht U, Lyko F. Azacytidine causes complex DNA methylation responses in myeloid leukemia. Mol. Cancer Ther.7, 2998–3005 (2008).
  • Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet.8, 286–298 (2007).
  • Bibikova M, Le J, Barnes B et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics1, 177–200 (2009).
  • Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat. Rev. Cancer5, 223–231 (2005).
  • Everhard S, Tost J, El Abdalaoui H et al. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro. Oncol.11, 348–356 (2009).
  • Siegmund KD, Laird PW. Analysis of complex methylation data. Methods27, 170–178 (2002).
  • Duffy MJ, Napieralski R, Martens JW et al. Methylated genes as new cancer biomarkers. Eur. J. Cancer45(3), 335–346 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.